Sub-homogeneous Positive Systems are Insensitive to Heterogeneous Time-Varying Delays

Hamid Reza Feyzmahdavian, Themistoklis Charalambous, and Mikael Johansson

Department of Automatic Control
School of Electrical Engineering and ACCESS Linnaeus Center
Royal Institute of Technology (KTH)

July 8, 2014
MTNS 14, Groningen, The Netherlands
Positive systems

Wide variety of applications, including

- **Social science**: population models, etc.,
- **Biology/Medicine**: reaction dynamics, proteins, etc.,
- **Economy**: stochastic models, markov jump systems, etc.

\[
\dot{p}_i(t) = -p_i(t) + \mathcal{I}_i(p(t))
\]

\[
p_i(t) \geq 0, \quad t \geq 0
\]
Positive systems

Wide variety of applications, including

- **Social science**: population models, etc.,
- **Biology/Medicine**: reaction dynamics, proteins, etc.,
- **Economy**: stochastic models, markov jump systems, etc.

\[
\dot{p}_i(t) = -p_i(t) + \mathcal{I}_i(p(t))
\]

\[
p_i(t) \geq 0, \quad t \geq 0
\]
Positive systems

Why heterogeneous time delays?

Omnipresent in distributed positive systems

Example: power control for wireless networks,

\[\dot{p}_i(t) = -p_i(t) + I_i(p_1(t - \tau^i_1(t)), \ldots, p_n(t - \tau^i_n(t))) \]
Monotone systems with heterogeneous delays

Consider the continuous-time nonlinear system

\[
\begin{align*}
\dot{x}_i(t) &= f_i(x(t)) + g_i(x_1(t - \tau^i_1(t)), \ldots, x_n(t - \tau^i_n(t))), \quad t \geq 0, \\
x_i(t) &= \varphi_i(t), \quad t \in [-\tau_{\max}, 0],
\end{align*}
\]

where \(\varphi_i(t) : [-\tau_{\max}, 0] \rightarrow \mathbb{R} \) is the initial condition.

The delays are continuous functions of time, but otherwise arbitrarily varying.

We assume that \(0 \leq \tau^i_j(t) \leq \tau_{\max} \), and allow \(\tau_{\max} \rightarrow \infty \).

Definition. System is called monotone if

\[
\varphi(t) \geq \varphi'(t) \Rightarrow x(t, \varphi) \geq x(t, \varphi'), \quad \forall t \geq 0
\]
Monotone systems with heterogeneous delays

Consider the continuous-time nonlinear system

\[
\dot{x}_i(t) = f_i(x(t)) + g_i(x_1(t - \tau_{1i}(t)), \ldots, x_n(t - \tau_{ni}(t))), \quad t \geq 0,
\]

\[
x_i(t) = \varphi_i(t), \quad t \in [-\tau_{\text{max}}, 0],
\]

where \(\varphi_i(t) : [-\tau_{\text{max}}, 0] \to \mathbb{R} \) is the initial condition.

The delays are continuous functions of time, but otherwise arbitrarily varying.

We assume that \(0 \leq \tau_{ji}(t) \leq \tau_{\text{max}}, \) and allow \(\tau_{\text{max}} \to \infty. \)

Definition. System is called **monotone** if

\[
\varphi(t) \geq \varphi'(t) \implies x(t, \varphi) \geq x(t, \varphi'), \quad \forall t \geq 0
\]
Fact. System

\[
\dot{x}_i(t) = f_i(x(t)) + g_i(x_1(t - \tau_1^i(t)), \ldots, x_n(t - \tau_n^i(t))), \quad t \geq 0, \\
x_i(t) = \varphi_i(t), \quad t \in [-\tau_{\text{max}}, 0],
\]

is monotone if \(f \) is cooperative, i.e.,

\[
\frac{\partial f_i}{\partial x_j}(x) \geq 0, \quad i \neq j, \quad \forall x \in \mathbb{R}_+^n,
\]

and \(g \) is non-decreasing, i.e.,

\[
x \geq y \implies g(x) \geq g(y)
\]

Positive monotone systems with heterogeneous delays

Definition. System

\[
\begin{align*}
\dot{x}_i(t) &= f_i(x(t)) + g_i(x_1(t - \tau^i_1(t)), \ldots, x_n(t - \tau^i_n(t))), \quad t \geq 0, \\
x_i(t) &= \varphi_i(t), \quad t \in [-\tau_{\text{max}}, 0],
\end{align*}
\]

is called **positive** if positive orthant is forward invariant:

\[
\varphi(\cdot) \geq 0 \Rightarrow x(t, \varphi) \geq 0, \quad \forall t \geq 0
\]

Proposition. Monotone system is positive if and only if

\[
f(0) + g(0) \geq 0
\]

Fact. Some positive monotone systems remain asymptotically stable under constant time delays!

- homogeneous positive monotone systems [Mason et al, 2009],
- sub-homogeneous positive monotone systems [Bokharaie et al, 2012].
Positive monotone systems with heterogeneous delays

Definition. System

\[
\begin{align*}
\dot{x}_i(t) &= f_i(x(t)) + g_i(x_1(t - \tau_1^i(t)), \ldots, x_n(t - \tau_n^i(t))), \quad t \geq 0, \\
x_i(t) &= \varphi_i(t), \quad t \in [-\tau_{\text{max}}, 0],
\end{align*}
\]

is called positive if positive orthant is forward invariant:

\[
\varphi(\cdot) \geq 0 \Rightarrow x(t, \varphi) \geq 0, \quad \forall t \geq 0
\]

Proposition. Monotone system is positive if and only if

\[
f(0) + g(0) \geq 0
\]

Fact. Some positive monotone systems remain asymptotically stable under constant time delays!

- homogeneous positive monotone systems [Mason et al, 2009],
- sub-homogeneous positive monotone systems [Bokharaie et al, 2012].
Our contributions

Does this insensitivity property hold also for *heterogeneous time-varying* delays?

1. Establish necessary and sufficient conditions for delay-independent stability of positive monotone systems with heterogeneous time-varying delays,

2. Show the insensitivity of sub-homogeneous positive monotone systems to heterogeneous time-varying delays.
Our contributions

Does this insensitivity property hold also for *heterogeneous time-varying* delays?

1. Establish necessary and sufficient conditions for delay-independent stability of positive monotone systems with heterogeneous time-varying delays,

2. Show the insensitivity of sub-homogeneous positive monotone systems to heterogeneous time-varying delays.
Asymptotic stability under constant time delays

Theorem [Smith, 1995]

For the monotone system with constant delays

\[
\dot{x}(t) = f(x(t)) + g(x(t - \tau_{\text{max}}))
\]

- if there exists a vector \(v \) such that
 \[
f(v) + g(v) \leq 0
 \]
 the trajectory \(x(t, v) \) is non-increasing.
- if there exists a vector \(w \) such that
 \[
f(w) + g(w) \geq 0
 \]
 the trajectory \(x(t, w) \) is non-decreasing.
Asymptotic stability under constant time delays

Equilibrium \(x^* \in [w, v] \) is asymptotically stable for initial conditions

\[
w \leq \varphi(t) \leq v, \quad \forall t \in [-\tau_{\text{max}}, 0]
\]

For time-varying delays, this result does not hold!
Theorem. Consider two monotone systems

\[
\dot{x}_i(t) = f_i(x(t)) + g_i(x_1(t - \tau^i_1(t)), \ldots, x_n(t - \tau^i_n(t))), \\
\dot{y}_i(t) = f_i(y(t)) + g_i(y(t - \tau_{\text{max}})),
\]

• If there exists a vector \(v \) such that

\[
f(v) + g(v) \leq 0
\]

then \(x(t, v) \leq y(t, v) \).

• If there exists a vector \(w \) such that

\[
f(w) + g(w) \geq 0
\]

then \(x(t, w) \geq y(t, w) \).
Asymptotic stability under heterogeneous time-varying delays

For all bounded heterogeneous time-varying delays, \(x^* \in [w, v] \) is asymptotically stable with respect to initial conditions

\[
w \leq \varphi(t) \leq v, \quad \forall t \in [-\tau_{\text{max}}, 0]
\]
A vector field \(f : \mathbb{R}^n \to \mathbb{R}^n \) is called **sub-homogeneous** of degree \(\alpha > 0 \) if

\[
f(\lambda x) \leq \lambda^\alpha f(x), \quad \forall x \in \mathbb{R}^n, \forall \lambda \geq 1
\]

- includes linear mappings \(f(x) = Ax \) and homogeneous vector fields

\[
f(\lambda x) = \lambda^\alpha f(x), \quad \forall x \in \mathbb{R}^n, \forall \lambda > 0
\]

When \(f \) and \(g \) are sub-homogeneous, the positive monotone system

\[
\begin{align*}
\dot{x}_i(t) & = f_i(x(t)) + g_i(x_1(t - \tau^i_1(t)), \ldots, x_n(t - \tau^i_n(t))), & t \geq 0, \\
x_i(t) & = \varphi_i(t), & t \in [-\tau_{\text{max}}, 0],
\end{align*}
\]

is called sub-homogeneous positive monotone.
Theorem. The sub-homogeneous positive monotone system

\[
\dot{x}_i(t) = f_i(x(t)) + g_i(x_1(t - \tau^i_1(t)), \ldots, x_n(t - \tau^i_n(t))), \quad t \geq 0,
\]

\[
x_i(t) = \varphi_i(t), \quad t \in [-\tau_{\text{max}}, 0]
\]

is globally asymptotically stable if and only if

\[
\dot{x}_i(t) = f_i(x(t)) + g_i(x(t)), \quad t \geq 0
\]

is globally asymptotically stable.
Sub-homogeneous positive monotone systems

Proof idea

Fact

For the monotone system with constant delays

\[\dot{x}(t) = f(x(t)) + g(x(t - \tau_{\text{max}})) \]

if there exist vectors \(v \) and \(w \) such that \(w \leq v \) and

\[
\begin{align*}
 f(v) + g(v) &\leq 0, \\
 f(w) + g(w) &\geq 0,
\end{align*}
\]

then equilibrium \(x^* \in [w, v] \) is asymptotically stable for initial conditions

\[w \leq \varphi(t) \leq v, \quad \forall t \in [-\tau_{\text{max}}, 0] \]

Proof idea

- For time-varying delays, this result does not hold!
Sub-homogeneous positive monotone systems

Proof idea

Lemma.

For the monotone system with heterogeneous time-varying delays

\[\dot{x}_i(t) = f_i(x(t)) + g_i\left(x_1(t - \tau_1^i(t)), \ldots, x_n(t - \tau_n^i(t))\right), \]

if there exist vectors \(v \) and \(w \) such that \(w \leq v \) and

\[f(v) + g(v) \leq 0, \]
\[f(w) + g(w) \geq 0, \]

then equilibrium \(x^* \in [w, v] \) is asymptotically stable for initial conditions

\[w \leq \varphi(t) \leq v, \quad \forall t \in [-\tau_{\text{max}}, 0] \]
Proof idea

If \(\dot{x}_i(t) = f_i(x(t)) + g_i(x(t)) \) is globally asymptotically stable, then, for any \(\varphi(t) \geq 0 \), there exist vectors \(v \) and \(w \) such that

\[
 w \leq \varphi(t) \leq v,
\]

and

\[
 f(v) + g(v) \leq 0, \\
 f(w) + g(w) \geq 0.
\]

According to the previous lemma,

\[
 \lim_{t \to \infty} x(t, \varphi) = x^*
\]
Conclusions

Concluding remarks

Summary
Positive monotone systems under heterogeneous time-varying delays

- Delay-independent condition for asymptotic stability
- Delay-insensitivity of sub-homogeneous positive monotone systems

Future directions

- Stability of positive monotone systems with unbounded time delays
- Insensitivity of more general classes of monotone systems
Thank you!

Questions?