Reduced power expenditure in the minimum latency transmission scheduling problem

Kyriakos Deliparaschos†, Themistoklis Charalambous§, Paul Christodoulides† and Evelina Klerides‡
†Electrical and Computer Engineering Department and Informatics, Cyprus University of Technology
§Department of Automatic Control, School of Electrical Engineering, KTH
‡Business School, Imperial College London

Transmission Scheduling
Time is divided into frames and frames into time-slots. Simplest example is TDMA (as many slots as nodes, one node per slot).

Problem Statement:
Given N communication requests, assign a color (time-slot) to each request. For all requests sharing the same color specify the power levels such that each request can be handled correctly (based on the abstract interference model).

Formulation

Decision variables:
- Processing-time variables:
 \[x_i(t) = \begin{cases} 1, & \text{if transmitter } i \text{ is processed at time } t \\ 0, & \text{otherwise} \end{cases} \]
- Power level variables:
 \[p_i(t) \in \mathbb{R}^+ \]

Master problem (Model 1):

\[
\begin{align*}
\text{minimize} & \quad \tau = \max_{i \in \mathcal{T}} \sum_{t=1}^{D} t x_i(t) \\
\text{subject to} & \quad \sum_{t=1}^{D} x_i(t) \geq 1 \quad \forall i \in \mathcal{T} \\
& \quad x_i(t) \in \{0, 1\} \quad \forall i \in \mathcal{T}, \ t = 1, \ldots, D.
\end{align*}
\]

Sub-problem (Model 2):

\[
\begin{align*}
\text{minimize} & \quad \sum_{i \in \mathcal{T}} \sum_{t=1}^{D} p_i(t) \\
\text{subject to} & \quad x_i^*(t) = 0 \Rightarrow p_i(t) = 0 \quad \forall i \in \mathcal{T}, \ t = 1, \ldots, D, \\
& \quad x_i^*(t) = 1 \Rightarrow p_i(t) g_{ii} \geq \gamma_i \left(\sum_{j \in \mathcal{T}, j \neq i} g_{ij} p_j(t) + \nu_i \right) \\
& \quad \forall i \in \mathcal{T}, \ t = 1, \ldots, D, \ p_i(t) \geq 0 \quad \forall i \in \mathcal{T}, \ t = 1, \ldots, D.
\end{align*}
\]

Proposed algorithm

Algorithm 1 A Cutting plane approach for the “Minimum latency transmission scheduling with SINR constraints” problem

initialise
 \[k = 1 \]
 Compute \(LB \) \{Lower bound, e.g., from [8]\}
 Compute \(UB \) \{Upper bound, e.g., from [8]\}
 \(feas = false \) \{feasibility indicator, obtained from solving the Subproblem (Model 3)\}

Add cuts to Model 2.

if \(LB < UB \) then

repeat

Solve Model 2 to get optimal values \(x^*(k) \) and \(MP^*(k) \).
Set \(LB = \max[MP^*(k), LB] \).
Solve Model 3 to check feasibility of SINR constraints.
if Model 3 is feasible then
 \(feas = true \)
else
 Add cuts of the form (9) to Model 2.
end if

\[k = k + 1 \]

until \(feas = true \) or \(LB = UB \)

end if

\[k = k - 1 \]

return \(LB, x^*(K) \).

Examples - Numerical evaluations

<table>
<thead>
<tr>
<th>No. of pairs</th>
<th>CPU time (sec)</th>
<th>% of time out</th>
<th>% power\text{cut} - power\text{master}</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.59</td>
<td>0</td>
<td>53%</td>
</tr>
<tr>
<td>20</td>
<td>44.70</td>
<td>0</td>
<td>3%</td>
</tr>
<tr>
<td>30</td>
<td>1840.18</td>
<td>3</td>
<td>1646%</td>
</tr>
<tr>
<td>40</td>
<td>N/A</td>
<td>4</td>
<td>2409%</td>
</tr>
</tbody>
</table>

TABLE I

Numerical results for finding the optimal solution to Model 1 using \(CP_{\text{cuts}} \) and \(CP_{\text{slots}} \).

CP cuts similar to \(CP_{\text{slots}} \) but upper and lower bounding techniques (as in [8]) are not used.

\(CP_{\text{cuts}} \) saves a lot of power, especially when the network is large, even though it does not guarantee to find the optimal configuration.

Conclusions

A Cutting Plane approach is proposed.
- Combines the minimum latency transmission scheduling problem
- Partitions the problem into a Master Problem and a Subproblem
- Aim to minimize the total power expenditure

References