Robust Linear Quadratic Regulator for Uncertain Systems

I. Tzortzis*, C.D. Charalambous*, T. Charalambous‡, C. Kourtellaris* and C.N. Hadjicostis*

*Department of Electrical and Computer Engineering, University of Cyprus
‡Department of Signals and Systems, Chalmers University of Technology

55th Conference on Decision and Control
Outline

1. Introduction
2. Problem Formulation
3. Robust LQR
4. Numerical Example
5. Conclusions - Future Work
Optimal control design for linear dynamical systems appeared in many diverse applications (e.g., aerospace, communication, robotics, finance, biology)

Certainty Equivalence Principle: same solution as for the deterministic problem as long as the disturbances present in the stochastic control system are zero mean

In realistic applications the presence of (nonzero-mean) disturbances in stochastic control systems affect optimality of the controller and compromise their performance
Introduction

Approach

- **Develop a LQR:** which is robust to disturbance variability, by using the *total variation distance* as a metric.

Total Variation Uncertainty Ball

Set of all possible noise distributions, center at a nominal distribution μ

$$
\mathbb{B}_{R_{TV}}(\mu) \triangleq \left\{ \nu_{w_i}(\cdot) \in \mathcal{M}_1([p_1, p_2]), i = 1, \ldots, N - 1 : \sum_{i=0}^{N-1} \| \nu_{w_i}(\cdot) - \mu_{w_i}(\cdot) \|_{TV} \leq R_{TV} \right\}, \quad R_{TV} \in [0, 2]
$$

- $\mathcal{M}_1([p_1, p_2])$: set of probability distributions on $[p_1, p_2]$
- $\mu(\cdot)$: “nominal” probability distribution of w_k
- $\nu(\cdot)$: “variation” probability distribution of w_k
Consider a discrete-time system

\[x_{k+1} = A_k x_k + B_k u_k + w_k, \quad x_0 = x, \quad k = 0, \ldots, N - 1 \]

- \(x_k \in \mathbb{R}^n, u_k \in \mathbb{R}^m \): state and control vectors
- \(A_k \in \mathbb{R}^{n \times n}, B_k \in \mathbb{R}^{n \times m} \): dynamics and input matrices
- \(\{w_k : k = 0, \ldots, N - 1\} \) is independent sequence of RV's
 - unknown probability distribution \(\nu_{w_k}(dw) : k = 0, \ldots, N - 1 \)
 - zero mean and \(W_k = \mathbb{E}[w_k w_k^T] < \infty \)
Problem Formulation I

Performance Criterion

Define the N-stage expected cost

\[J_N(\pi, \nu, x) \triangleq \mathbb{E}_x^\pi \left[\sum_{k=0}^{N-1} (x_k^T Q_k x_k + u_k^T R_k u_k) + x_N^T Q_N x_N \right] \]

- \(Q_k \succeq 0, R_k \succ 0 \): stage and input cost matrices
- \(\mathbb{E}_x^\pi [\cdot] \): induced by the unknown distribution \(\nu \triangleq \{ \nu_{w_k}(\cdot) \} \) of the noise sequence \(w_k \)

Minimax Stochastic Problem

\[J_N^*(x) \triangleq \min_{u \in \mathcal{U}(x)} \max_{\nu(\cdot) \in \mathbb{B}_{RTV}(\mu)} J_N(\pi, \nu, x), \quad \forall x \in \mathcal{X} \] \hspace{1cm} (1)

- **Minimization** is over the control laws \(u \in \mathcal{U}(x) \)
- **Maximization** is over the variation probability distribution \(\nu(\cdot) \in \mathbb{B}_{RTV}(\mu) \)
Remark

- For $R_{TV} = 0$ then (1) reduces to the standard LQR problem with a known solution\(^1\)
- The covariance of the noise W_k enters in the total cost, but not the control law, i.e.,

Control Law: $u_k = G_k x_k$ with $G_k = -(R_k + B_k^T P_{k+1} B_k)^{-1} B_k^T P_{k+1} A_k$

Total Cost: $J_0^*(x_0) = x_0^T P_0 x_0 + \sum_{k=0}^{N-1} \text{Tr}(P_{k+1} W_k)$

The dynamic programming algorithm gives\(^2\)

\[
J_N^*(x_N) = x_N^T Q_N x_N \\
J_k^*(x_k) = \min_{u_k} \left\{ x_k^T Q_k x_k + u_k^T R_k u_k \\
+ \max_{\nu w_k(\cdot) \in B_{RTV}(\mu)} \mathbb{E}_{\nu w_k(\cdot)} \left[J_{k+1}(A_k x_k + B_k u_k + w_k) \right] \right\}
\]

Define

\[
\ell_k(x_k, u_k, w_k) \triangleq J_{k+1}(A_k x_k + B_k u_k + w_k) \\
= (A_k x_k + B_k u_k + w_k)^T P_{k+1}(A_k x_k + B_k u_k + w_k) \\
+ (A_k x_k + B_k u_k + w_k)^T F_{k+1} + r_{k+1}.
\]

Let

- $\ell_{\text{max},k}(x_k, u_k), \ell_{\text{min},k}(x_k, u_k)$: max. and min. values of (2) wrt w_k
- $\Sigma^o(k), \Sigma_o(k)$: corresponding support sets
- $\Sigma_j(k)$: set of indices for which (2) achieves $(j + 1)th$ smallest value
- $\ell_{\Sigma_j,k}(x_k, u_k)$ the corresponding values of the sequence in $\Sigma_j(k)$

The maximization problem is given by

$$\max_{\nu_{w_k}(\cdot) \in \mathbb{B}_{RTV}(\mu)} \mathbb{E}_{\nu_w(\cdot)} \left[\ell_k(x_k, u_k, w_k) \right]$$

$$= \ell_{\text{max},k} \nu_{w_k}^*(\Sigma^o(k)) + \ell_{\text{min},k} \nu_{w_k}^*(\Sigma_o(k)) + \sum_{j=1}^{r} \ell_{\Sigma_j,k} \nu_{w_k}^*(\Sigma_j(k))$$

Optimal Distribution, $\nu^* \in B_{R_{TV}}(\mu)$

The maximizing variation probability distribution of w_k is given by

\[
\nu^*_{w_k}(\Sigma^o(k)) = \mu_{w_k}(\Sigma^o(k)) + \frac{\alpha}{2}
\]

\[
\nu^*_{w_k}(\Sigma_o(k)) = (\mu_{w_k}(\Sigma_o(k)) - \frac{\alpha}{2})^+
\]

\[
\nu^*_{w_k}(\Sigma_j(k)) = \left(\mu_{w_k}(\Sigma_j(k)) - \left(\frac{\alpha}{2} - \sum_{z=1}^{j} \sum_{i \in \Sigma_{z-1}(k)} \mu_{w_k}(\Sigma_i) \right)^+ \right)^+
\]

\[
\alpha = \min(R_{TV}, R_{\text{max}}), \quad R_{\text{max}} = 2(1 - \mu(\Sigma^0(k)))
\]
Equivalent Formulation

Assume that $\nu_{w_k}^*(\Sigma^o(k)) < 1$ and $\nu_{w_k}^*(\Sigma_o(k)) > 0$ and hence $\nu_{w_k}^*(\Sigma_j(k)) = \mu_{w_k}(\Sigma_j(k))$, then

$$\max_{\nu_{w_k}(\cdot) \in \mathcal{B}_{RTV}(\mu)} \mathbb{E}_{\nu_{w}(\cdot)} \left[\ell_k(x_k, u_k, w_k) \right]$$

$$= \ell_{\max, k} \nu^*(\Sigma^o(k)) + \ell_{\min, k} \nu^*(\Sigma_o(k)) + \sum_{j=1}^{r} \ell_{\Sigma_j, k} \nu^*(\Sigma_j(k))$$

$$= \left(\ell_{\max, k} - \ell_{\min, k} \right) \frac{R_{TV}}{2} + \sum_{w_k \in \Sigma} \ell_k(w_k) \mu(w_k).$$

- The first term in the right measures the difference between the max. and min. values of $\ell_k(x_k, u_k, w_k)$ wrt w_k scaled by the TV distance.
- It has the interpretation of minimizing the disturbance variability.
Solution of Minimax Problem

- By the solution of the maximization

\[J^*_k(x_k) = \min_{u_k} \left\{ x_k^T Q_k x_k + u_k^T R_k u_k + \mathbb{E}_{v^*_w(\cdot)} \left[\ell_k(x_k, u_k, w_k) \right] \right\} \]

- expectation performed wrt to maximizing p.d. of \(w_k \)
- vectors \(w_k \) need not have zero mean under \(v^*_w \)

- By backward induction we show that

\[J^*_k(x_k) = x_k^T P_k x_k + x_k^T F_k + r_k \]
Solution of Robust LQR

Minimizer

The optimal control is given by

\[u^*_k = -H_{22}^{-1}(k) \left(H_{12}^T(k)x_k + B_k^T P_{k+1} \mathbb{E} v_\nu^* \cdot [w_k] + \frac{1}{2} B_k^T F_{k+1} \right) \]

or, equivalently

\[u^*_k = -H_{22}^{-1}(k) \left(H_{12}^T(k)x_k + R_{TV} B_k^T P_{k+1} (w^+_k - w^-_k) + \frac{1}{2} B_k^T F_{k+1} \right) \]

where

- \(w^+_k \triangleq \arg \max_{w_k \in [p_1, p_2]} J^*_{k+1}(A_k x_k + B_k u_k + w_k) \)
- \(w^-_k \triangleq \arg \min_{w_k \in [p_1, p_2]} J^*_{k+1}(A_k x_k + B_k u_k + w_k) \)
- \(H_{12}(k) \triangleq A_k^T P_{k+1} B_k \) and \(H_{22}(k) \triangleq R_k + B_k^T P_{k+1} B_k \)
- Feedback gain matrices and Riccati equations depend on the variation probability distribution of \(w_k \)
Consider the linear discrete uncertain system, with the following dynamic and input matrices

\[
A = \begin{bmatrix}
0.9974 & 0.0539 \\
-0.1078 & 1.1591
\end{bmatrix}, \quad
B = \begin{bmatrix}
0.0013 \\
0.0539
\end{bmatrix},
\]

\[
Q = \begin{bmatrix}
0.25 & 0 \\
0 & 0.05
\end{bmatrix}, \quad Q_N = Q, \quad R = 0.5
\]

- Initial conditions
 \(x_0 = [2 \ 1]^T \).
- \(w_k \) selected randomly with a known nominal probability distribution \(\mu_w \)
Optimal control and trajectories

- Left plot: standard LQR without noise
- Right plot: standard LQR with noise
Numerical Example

Robust LQR

Optimal control and trajectories

- Left plot: Robust LQR with $R_{TV} = 1$
- Right plot: Robust LQR with $R_{TV} = R_{\text{max}}$
Outline

1. Introduction
2. Problem Formulation
3. Robust LQR
4. Numerical Example
5. Conclusions - Future Work
Conclusions

- Robust LQR with TV distance captures the disturbance variability, leading to an overall good performance.

- Control laws which are more robust wrt disturbances, at the expense of additional costs.

- Designer needs to balance the desire for low costs with undesirability of scenarios with high disturbance variability.

Possible future direction:

Extension to the case of systems with parametric uncertainties

\[x_{k+1} = \left(A_k + \Delta A_k(w_k) \right) x_k + \left(B_k + \Delta B_k(w_k) \right) u_k \]
Thank you!

For more information:

tzortzis.ioannis@ucy.ac.cy
chadcha@ucy.ac.cy
themistoklis.charalambous@chalmers.se
kourtellaris.christos@ucy.ac.cy
chadjic@ucy.ac.cy

Acknowledgement

I would like to thank the Ericsson Research Foundation for awarding me a generous grant to support my attendance at the conference.