On the Rate of Convergence of Positive Linear Systems with Heterogeneous Time-Varying Delays

Hamid Reza Feyzmahdavian, Themistoklis Charalambous and Mikael Johansson

Department of Automatic Control
School of Electrical Engineering and ACCESS Linnaeus Center
Royal Institute of Technology (KTH)

July 19, 2013
ECC 13, Zurich, Switzerland
Introduction | Positive systems

Positive systems

Wide variety of applications, including

- **Social science**: population models, etc.
- **Biology/Medicine**: nitrate models, proteins, etc.,
- **Economy**: stochastic models, markov jump systems, etc.,

Why heterogeneous time delays?

Omnipresent in positive systems, in particular *distributed* systems.

Example: power control for wireless networks,

\[
\dot{p}_1(t) = -p_1(t) + a_{12}p_2(t - \tau_2^1(t)) + a_{13}p_3(t - \tau_3^1(t))
\]
Positive linear systems with heterogeneous delays

Consider the continuous-time linear system

$$
\dot{x}_i(t) = \sum_{j=1}^{n} a_{ij} x_j(t) + \sum_{j=1}^{n} b_{ij} x_j(t - \tau^i_j(t)), \quad t \geq 0,
$$

$$
x_i(t) = \varphi_i(t), \quad t \in [-\tau_{\text{max}}, 0],
$$

where $\varphi_i(t) : [-\tau_{\text{max}}, 0] \rightarrow \mathbb{R}$ is the initial value function.

The delays are continuous functions of time, but otherwise arbitrarily varying.

We assume that $0 \leq \tau^i_j(t) \leq \tau_{\text{max}}$, and allow $\tau_{\text{max}} \rightarrow \infty$.

Definition. System is called positive if positive orthant is forward invariant:

$$
\varphi(\cdot) \geq 0 \Rightarrow x(t) \geq 0, \quad \forall t \geq 0.
$$

Fact. System is positive if and only if $A = [a_{ij}]$ is Metzler and $B = [b_{ij}]$ is non-negative [Rami 2009].
Consider the continuous-time linear system

\[
\dot{x}_i(t) = \sum_{j=1}^{n} a_{ij} x_j(t) + \sum_{j=1}^{n} b_{ij} x_j(t - \tau_{ij}(t)), \quad t \geq 0,
\]

\[
x_i(t) = \varphi_i(t), \quad t \in [-\tau_{\text{max}}, 0],
\]

where \(\varphi_i(t) : [-\tau_{\text{max}}, 0] \rightarrow \mathbb{R}\) is the initial value function.

The delays are continuous functions of time, but otherwise arbitrarily varying.

We assume that \(0 \leq \tau_{ij}(t) \leq \tau_{\text{max}}\), and allow \(\tau_{\text{max}} \rightarrow \infty\).

Definition. System is called **positive** if positive orthant is forward invariant:

\[
\varphi(\cdot) \geq 0 \Rightarrow x(t) \geq 0, \quad \forall t \geq 0.
\]

Fact. System is positive if and only if \(A = [a_{ij}]\) is Metzler and \(B = [b_{ij}]\) is non-negative [Rami 2009].
Positive linear systems with heterogeneous delays

Goal Delay-independent stability analysis

\[
\dot{x}_i(t) = \sum_{j=1}^{n} a_{ij} x_j(t) + \sum_{j=1}^{n} b_{ij} x_j(t - \tau^i_j(t)), \quad i = 1, \ldots, n,
\]

\[
0 \leq \tau^i_j(t) \leq \tau_{\text{max}}.
\]

Fact. Without delays, the positive system

\[
\dot{x}(t) = (A + B)x(t), \quad t \geq 0,
\]

is stable if and only if

\[
\begin{cases}
(A + B)^T P + P(A + B) < 0, \\
P \succ 0.
\end{cases}
\]

\[
\begin{cases}
(A + B)v < 0, \\
v > 0.
\end{cases}
\]

Fact. Positive systems remain *asymptotically* stable under bounded delays! [Haddad 2004, Rami 2009, Liu 2010]
Positive linear systems with heterogeneous delays

Goal Delay-independent stability analysis

\[
\dot{x}_i(t) = \sum_{j=1}^{n} a_{ij} x_j(t) + \sum_{j=1}^{n} b_{ij} x_j(t - \tau_{ij}(t)), \quad i = 1, \ldots, n,
\]

\[
0 \leq \tau_{ij}(t) \leq \tau_{\text{max}}.
\]

Fact. Without delays, the positive system

\[
\dot{x}(t) = (A + B)x(t), \quad t \geq 0,
\]

is stable if and only if

\[
\begin{cases}
(A + B)^T P + P(A + B) < 0, \\
P > 0.
\end{cases} \quad \iff \quad \begin{cases}
(A + B)v < 0, \\
v > 0.
\end{cases}
\]

Fact. Positive systems remain asymptotically stable under bounded delays!

Positive linear systems with heterogeneous delays

Goal Delay-independent stability analysis

\[
\dot{x}_i(t) = \sum_{j=1}^{n} a_{ij} x_j(t) + \sum_{j=1}^{n} b_{ij} x_j(t - \tau_{ij}(t)), \quad i = 1, \ldots, n,
\]

\[
0 \leq \tau_{ij}(t) \leq \tau_{\text{max}}.
\]

Fact. Without delays, the positive system

\[
\dot{x}(t) = (A + B)x(t), \quad t \geq 0,
\]

is stable if and only if

\[
\begin{cases}
(A + B)^T P + P(A + B) < 0, \\
P \succ 0.
\end{cases} \quad \iff \quad \begin{cases}
(A + B)v < 0, \\
v > 0.
\end{cases}
\]

Fact. Positive systems remain asymptotically stable under bounded delays!
Our contributions

1. Establish \textbf{exponential} stability under \textbf{heterogeneous} time-varying delays,

2. \textbf{Quantify} how \textbf{decay rate} depends on upper bound on time-varying delays,

3. \textbf{Optimizing Lyapunov function} to yield best decay-rate guarantee.
Exponential stability under bounded time-varying delays

Theorem. The positive linear system

\[
\begin{cases}
\dot{x}_i(t) = \sum_{j=1}^{n} a_{ij} x_j(t) + \sum_{j=1}^{n} b_{ij} x_j(t - \tau^i_j(t)), & t \geq 0, \\
x_i(t) = \varphi_i(t), & t \in [-\tau_{\text{max}}, 0],
\end{cases}
\]

is exponentially stable if and only if there exists a vector \(v > 0 \) such that

\[(A + B)v < 0.\]

In particular, all solutions satisfy

\[\|x(t)\|_v^\infty \leq \left(\sup_{-\tau_{\text{max}} \leq s \leq 0} \|\varphi(s)\|_v^\infty \right) e^{-\eta t}, \quad t \geq 0,
\]

where \(\eta = \min_{1 \leq i \leq n} \eta_i \), and \(\eta_i \) is the unique positive solution to

\[
\left(\sum_{j=1}^{n} \frac{1}{v_i} a_{ij} v_j \right) + \left(\sum_{j=1}^{n} \frac{1}{v_i} b_{ij} v_j \right) e^{\eta_i \tau_{\text{max}}} + \eta_i = 0.
\]
Proof idea

Based on a *Lyapunov-Razumikhin* approach using

\[V(x) = \|x\|_\infty^v = \max_{1 \leq i \leq n} \frac{x_i}{v_i}, \]

- does not impose any conditions on the evolution of the time delay,
- quantifies decay rate.
Consider linear system

\[
\begin{bmatrix}
\dot{x}_1(t) \\
\dot{x}_2(t)
\end{bmatrix} =
\begin{bmatrix}
-6 & 2 \\
1 & -3
\end{bmatrix}
\begin{bmatrix}
x_1(t) \\
x_2(t)
\end{bmatrix} +
\begin{bmatrix}
3 & 0 \\
0 & 0.5
\end{bmatrix}
\begin{bmatrix}
x_1(t - \tau_1(t)) \\
x_2(t - \tau_2(t))
\end{bmatrix},
\]

\[\tau_1(t) = 5 + \sin(t),\]
\[\tau_2(t) = 4 - \cos(t).\]

- Since \(A\) is Metzler and \(B\) is non-negative, system is positive.
- If \((A + B)v < 0\) for some \(v > 0\), system is globally exponentially stable for any bounded time-varying delays:

\[
\begin{bmatrix}
-3 & 2 \\
1 & -2.5
\end{bmatrix}
\begin{bmatrix}
v_1 \\
v_2
\end{bmatrix} < 0,
\]

\[v_1, v_2 > 0.\]

For example, \(v = (1, 1)\) verifies exponential stability.
Example

Consider linear system

\[
\begin{bmatrix}
\dot{x}_1(t) \\
\dot{x}_2(t)
\end{bmatrix} = \begin{bmatrix}
-6 & 2 \\
1 & -3
\end{bmatrix} \begin{bmatrix}
x_1(t) \\
x_2(t)
\end{bmatrix} + \begin{bmatrix}
3 & 0 \\
0 & 0.5
\end{bmatrix} \begin{bmatrix}
x_1(t - \tau_1(t)) \\
x_2(t - \tau_2(t))
\end{bmatrix},
\]

\[\tau_1(t) = 5 + \sin(t),\]
\[\tau_2(t) = 4 - \cos(t).\]

- Since \(A \) is Metzler and \(B \) is non-negative, system is positive.
- If \((A + B)v < 0\) for some \(v > 0 \), system is globally exponentially stable for any bounded time-varying delays:

\[
\begin{bmatrix}
-3 & 2 \\
1 & -2.5
\end{bmatrix} \begin{bmatrix}
v_1 \\
v_2
\end{bmatrix} < 0,
\]

\[v_1, v_2 > 0.\]

For example, \(v = (1, 1) \) verifies exponential stability.
Example

Using vector \(v = (1, 1) \) together with \(\tau_{\text{max}} = 6 \), the solutions to the nonlinear equation

\[
\left(\sum_{j=1}^{n} \frac{1}{v_i} a_{ij} v_j \right) + \left(\sum_{j=1}^{n} \frac{1}{v_i} b_{ij} v_j \right) e^{\eta_i \tau_{\text{max}}} + \eta_i = 0, \quad i = 1, 2,
\]

are \(\eta_1 = 0.0583 \) and \(\eta_2 = 0.1957 \).
Example | Bound on decay rate

Decay rate guarantee depends on norm

Guaranteed decay rate depends on the vector \(v > 0 \)

\[
(A + B)v < 0, \\
\left(\sum_{j=1}^{n} \frac{1}{v_i} a_{ij} v_j \right) + \left(\sum_{j=1}^{n} \frac{1}{v_i} b_{ij} v_j \right) e^{\eta_i \tau_{\text{max}}} + \eta_i = 0.
\]

Would like to maximize the smallest \(\eta_i \) under above constraints:

\[
\text{maximize} \quad \eta \\
\text{subject to} \quad \eta = \min_{1 \leq i \leq n} \eta_i, \\
(A + B)v < 0, \\
\left(\sum_{j=1}^{n} \frac{1}{v_i} a_{ij} v_j \right) + \left(\sum_{j=1}^{n} \frac{1}{v_i} b_{ij} v_j \right) e^{\eta_i \tau_{\text{max}}} + \eta_i = 0.
\]

Non-convex optimization problem in \(v \) and \(\eta_i \)!
Example | Bound on decay rate

Decay rate guarantee depends on norm

Guaranteed decay rate depends on the vector \(v > 0 \)

\[
(A + B)v < 0, \\
\left(\sum_{j=1}^{n} \frac{1}{v_i} a_{ij} v_j \right) + \left(\sum_{j=1}^{n} \frac{1}{v_i} b_{ij} v_j \right) e^{\eta_i \tau_{\text{max}}} + \eta_i = 0.
\]

Would like to maximize the smallest \(\eta_i \) under above constraints:

\begin{align*}
\text{maximize} & \quad \eta \\
\text{subject to} & \quad \eta = \min_{1 \leq i \leq n} \eta_i, \\
& \quad (A + B)v < 0, \\
& \quad \left(\sum_{j=1}^{n} \frac{1}{v_i} a_{ij} v_j \right) + \left(\sum_{j=1}^{n} \frac{1}{v_i} b_{ij} v_j \right) e^{\eta_i \tau_{\text{max}}} + \eta_i = 0.
\end{align*}

Non-convex optimization problem in \(v \) and \(\eta_i \)!
Decay rate guarantee depends on norm

Guaranteed decay rate depends on the vector $v > 0$

$$(A + B)v < 0,$$

$$
\left(\sum_{j=1}^{n} \frac{1}{v_i} a_{ij} v_j \right) + \left(\sum_{j=1}^{n} \frac{1}{v_i} b_{ij} v_j \right) e^{n_i \tau_{\text{max}}} + \eta_i = 0.
$$

Would like to maximize the smallest η_i under above constraints:

\[\text{maximize} \quad \eta \]

\[\text{subject to} \quad \eta = \min_{1 \leq i \leq n} \eta_i, \]

$$(A + B)v < 0,$$

$$
\left(\sum_{j=1}^{n} \frac{1}{v_i} a_{ij} v_j \right) + \left(\sum_{j=1}^{n} \frac{1}{v_i} b_{ij} v_j \right) e^{n_i \tau_{\text{max}}} + \eta_i = 0.
$$

Non-convex optimization problem in v and η_i!
Optimal decay rate via convex optimization

Change-of-variables $v_i = e^{z_i}$ yields convex formulation, i.e.,

\[
\begin{align*}
\text{maximize} & \quad \eta \\
\text{subject to} & \quad \eta \leq \eta_i, \\
& \quad a_{ii} + b_{ii} + \sum_{j \neq i} (a_{ij} + b_{ij}) e^{z_j - z_i} < 0, \\
& \quad a_{ii} + \sum_{j \neq i} a_{ij} e^{z_j - z_i} + \sum_{j=1}^{n} b_{ij} e^{z_j - z_i + \eta_i \tau_{\text{max}}} + \eta_i \leq 0, \\
& \quad i = 1, \ldots, n.
\end{align*}
\]

Optimal vector v and decay rate found efficiently.
Optimal decay rate via convex optimization

Change-of-variables $v_i = e^{z_i}$ yields convex formulation, i.e.,

$\textbf{maximize} \quad \eta$

$\textbf{subject to} \quad \eta \leq \eta_i,$

$$a_{ii} + b_{ii} + \sum_{j \neq i} (a_{ij} + b_{ij}) e^{z_j - z_i} < 0,$$

$$a_{ii} + \sum_{j \neq i} a_{ij} e^{z_j - z_i} + \sum_{j=1}^{n} b_{ij} e^{z_j - z_i} + \eta_i \tau_{\text{max}} + \eta_i \leq 0,$$

$i = 1, \ldots, n.$

Optimal vector v and decay rate found efficiently.
Example

Simulation (black) and upper bound (blue) for two choices of ν.

Left is optimal for system without delay; right is optimized for $\tau_{max} = 6$.
Conclusions

Concluding remarks and future directions

Summary

Positive linear systems under heterogeneous time-varying delays

- Necessary and sufficient condition for exponential stability
- Best guaranteed decay rates via convex optimization

Future directions

- Exponential stability of nonlinear positive systems
- Exponential stability of positive systems with unbounded time delays
Conclusions

Concluding remarks and future directions

Summary

Positive linear systems under heterogeneous time-varying delays

- Necessary and sufficient condition for exponential stability
- Best guaranteed decay rates via convex optimization

Future directions

- Exponential stability of *nonlinear positive systems*
- Exponential stability of positive systems with *unbounded* time delays
Conclusions

Thank you!

Questions?