Medium Access Control via Contention-Based Distributed Power Control

Themistoklis Charalambous
Automatic Control Lab
KTH

Ioannis Krikidis
ECE
University of Cyprus

This research was sponsored in part by the Swedish Foundation for Strategic Research, SSF, under the RAMCOORAN project.
Outline of the talk

• Medium Access Control (MAC)
• Motivation
• Network and channel models
• Related work
• The CB-DCPC algorithm
 ▸ Description of the algorithm
 ▸ The back off protocol
• Performance evaluation
• Conclusions
Medium Access Control (MAC)

MAC: Part of the Data Link Layer
- **Purpose:** to manage access to the shared wireless medium. Responsible for resolving conflicts among different nodes for channel access.
- **Nodes:** decide when to access the channel, avoiding collisions and efficiently utilizing the bandwidth.

Classification of MAC protocols:

- **Contestion Based**
 - Random Access
 - Reservation/Collision resolution
- **Contention Free**
 - i.e. Transmission Scheduling (e.g., Token based, FDMA, CDMA, TDMA)
Motivation

• *Contention control*: distributed strategy to access and share the wireless channel.

• Study contention/interaction among wireless nodes.

• Design contention-based Medium Access Control algorithms using power control.

• Stabilize the network around a steady-state with reduced overhead communication, and with
 ▶ *fairness*
 ▶ *service differentiation*
 ▶ *efficiency*
Network model

- Planar network
- Half duplex transceivers, hence unidirectional links
- Omnidirectional antennae
Channel models

Graph-based models:
- Ideal model or Unit Disk Graph (UDG)
- Protocol model

Limitations:
- Define a set of interference edges (interference: binary and a local measure)
- Interference for far away nodes is not considered (substantial from several nodes)

Fading channel models:
- Geometrical Physical model
- Abstract Physical model

Limitations of the geometrical Physical model:
- Path loss between nodes constrained by their Euclidean coordinates
- Simplifying assumptions: isotropic users with no obstructions
We consider the *abstract* Physical Model where receivers experience *interference*:

\[I_i = \sum_{j \neq i, j \in T} g_{ji}p_j + \nu \]

where
- \(g_{ij} \) is the channel gain on the link between transmitter \(i \) and receiver \(j \)
- \(p_i \) is the power level chosen by transmitter
- \(\nu \) is the variance of thermal noise at the receiver

The link quality is measured by the Signal-to-Interference-and-Noise-Ratio (SINR), given by

\[\Gamma_i = \frac{g_{ii}p_i}{\sum_{j \neq i, j \in T} g_{ji}p_j + \nu} . \]

A transmission is successful (error free), if the SINR at the receiver is greater than the capture ratio, \(\gamma_i \):

\[\frac{g_{ii}p_i}{\sum_{j \neq i, j \in T} g_{ji}p_j + \nu} \geq \gamma_i . \]
Feasibility of a network

The transmission condition can be written as

\[p_i \geq \gamma_i \left(\sum_{j \neq i, j \in T} \frac{g_{ji}}{g_{ii}} p_j + \frac{\nu}{g_{ii}} \right) \]

In matrix form, for a network consisting of \(n \) communication pairs, \(\mathbf{p} \geq \Gamma G \mathbf{p} + \eta \)

where

\[\Gamma = \text{diag}(\gamma_i) \]
\[\mathbf{p} = \begin{pmatrix} p_1 & p_2 & \ldots & p_n \end{pmatrix}^T \]
\[G_{ij} = \begin{cases} 0 & \text{if } i = j, \\ \frac{g_{ji}}{g_{ii}} & \text{if } i \neq j. \end{cases} \]
\[\eta_i = \frac{\gamma_i \nu}{g_{ii}} \]

Let \(C = \Gamma G \), then \((I - C) \mathbf{p} \geq \eta \). From Perron-Frobenius theorem, the following are equivalent statements:

1. There exists a vector \(\mathbf{p}^* \geq 0 \) (i.e. \(p_i > 0 \) for all \(i \)) such that \((I - C) \mathbf{p} \geq \eta \).
2. \((1 - C)^{-1} \) exists and is positive component-wise.
3. \(\rho(C) < 1 \).
Feasibility of a network

\[g_{11} \quad g_{12} \quad g_{22} \]

\[g_{21} \]

\[S_1 \quad S_2 \quad R_1 \quad R_2 \]

\[C_1 \quad C_2 \quad K, L \quad M \]

\[g_{11} \quad g_{12} \quad g_{22} \]

\[g_{21} \]

\[S_1 \quad S_2 \quad R_1 \quad R_2 \]

\[C_1 \quad C_2 \quad K, L \quad M \]

\[g_{11} \quad g_{12} \quad g_{22} \]

\[g_{21} \]

\[S_1 \quad S_2 \quad R_1 \quad R_2 \]

\[C_1 \quad C_2 \quad K, L \quad M \]
Related work

DCPC (no admission)

Characteristics:
- Constrained power control.
- If $p_{\text{updated}}>p_{\text{max}}$, then $p=p_{\text{max}}$.

Disadvantages:
- Aggravation of interference.
- System degradation with pairs.

If we try to minimize interference by setting $p=0$ if $p_{\text{updated}}>p_{\text{max}}$, then we may obtain oscillatory responses.

DPC/ALP

Characteristics:
- Enhanced SINR ($\delta \gamma_i, \delta>1$)
- Voluntary Drop-Out (VDO)
- Forced Drop-Out (FDO)

Disadvantages:
- Communication overhead.
- Monopoly of the channel by “weak” pairs.

If communication pair 3 ($S_3 \rightarrow R_3$) enters the network, then only pair 5 can potentially enter the network simultaneously.
The CB-DCPC algorithm

Back-off Time: $BT \sim E(\mu)$, $\mu = \mu_0 2^{-b}$

Initializations:
- $p = p(0)$;
- Clock 1: $K_1 = 0$;
- Clock 2: $K_2 = 0$;
- Counter: $b = 0$;

- **START**

- **Initialization:**
 - $p = p(0)$;
 - Clock 1: $K_1 = 0$;
 - Clock 2: $K_2 = 0$;
 - Counter: $b = 0$;

- **p = 0**
 - **Yes**
 - **K_1 < BT**
 - **Yes**
 - $K_1 = K_1 + 1$;
 - **No**
 - **K_2 < ST**
 - **Yes**
 - Update p;
 - **No**
 - **$\Gamma/\gamma > \delta$**
 - **Yes**
 - $b = 0$;
 - **No**
 - $p = p(0)$;

- **p = 0;**
- Clock 1: $K_1 = 0$;
- Clock 2: $K_2 = 0$;
- Counter: $b = b + 1$;
- Back-off time: BT
On the stability of the CB-DCPC algorithm

So far...

- No theoretical justification of stability and performance of random multi-access protocols (e.g. ALOHA, IEEE 802.11), due to coupling between wireless nodes.
- They make use of the assumption are mutually independent (decoupling).
- Proved to be exact for a wide range of back off algorithms as the number of nodes grows.
- Also assume that all the nodes are synchronized and time is slotted.

In this work...

- Lifted all the assumptions (decoupling, synchronization, time slotted).
- Consider saturated nodes (no queues).
- We don’t consider stability issues: coupling between nodes is complex and it is difficult to model and analyze.
- Instead evaluate the performance for various networks.
Examples

Parameters evaluated:

- throughput of the network over time;
- average share of the network each communication pair acquires;
- average number of users in the network during simulations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desired SINR (γ_i)</td>
<td>3</td>
</tr>
<tr>
<td>Proportionality constant (k_i)</td>
<td>0.25</td>
</tr>
<tr>
<td>Threshold (δ)</td>
<td>0.95</td>
</tr>
<tr>
<td>Settling Time (ST)</td>
<td>30s</td>
</tr>
<tr>
<td>Initial expected Back off Time (μ_0^{-1})</td>
<td>200s</td>
</tr>
<tr>
<td>Noise (ν)</td>
<td>0.04 W</td>
</tr>
</tbody>
</table>

Power and noise are measured in Watts, data rate in bits/s.
Example 1: Small-sized network [$\rho(C)<1$]
Example 2: Small-sized network $[\rho(C)>1]$

DCPC:

CB-DCPC:
Example 3: Medium-sized network \[\rho(C)=7.8>1\]

Average number of pairs connected: **1.8374** - better than algorithms that claim collision when two wireless nodes transmit simultaneously.

<table>
<thead>
<tr>
<th>Pair</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of time (%)</td>
<td>0.287</td>
<td>0.138</td>
<td>0.131</td>
<td>0.327</td>
<td>0.232</td>
<td>0.218</td>
<td>0.054</td>
</tr>
</tbody>
</table>

Proportion of time each communication pair manages to meet the QoS requirement.
Throughput for various networks

<table>
<thead>
<tr>
<th>Network Label</th>
<th>Number of Pairs</th>
<th>Average number of pairs</th>
<th>Maximum number of simultaneous transmissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>1.8374</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>1.3755</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>1.6219</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>1.9772</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>2.2036</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>2.3919</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>18</td>
<td>2.7558</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>19</td>
<td>2.8702</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>21</td>
<td>3.1780</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>28</td>
<td>3.7746</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>33</td>
<td>3.7744</td>
<td>9</td>
</tr>
</tbody>
</table>
Conclusions:

☐ CB-DCPC does not claim to improve the overall throughput - allows all nodes to participate in the network.

☑️ However, it improves fairness - allows nodes with high interference to attempt for a connection.

☐ No power dissipation with respect to total throughput

☑️ but minimizes power of individuals with respect to the share obtained in the wireless channel.

☐ Disadvantage: No link protection

☑️ but overhead communication for admission is eliminated, thus reducing the noise in the channel.
Thank you!