Overload Management in Data Stream Processing Systems with Latency Guarantees

Evangelia Kalyvianaki*, Themistoklis Charalambous†, Marco Fiscato*, Peter Pietzuch*

*Imperial College London, Department of Computing
†Royal Institute of Technology (KTH), Sweden

Feedback Computing Workshop 2012
Data Stream Processing

Data streaming involves

Processing streams of data from distributed sources in near *real-time*

The big data era

- Social networks, e.g. twitter and facebook
- Data-center monitoring, environmental sensing

Characteristics

- Large volume of data: e.g.
 - 340K tweets/day, 13K tweets/sec for popular tweets
- Workload fluctuations
- Results delivered at high throughput and low-latency
What are the top-10 locations, in the city center, with the highest concentration in CO?
Distributed stream processing system (DSPS)

Set of hosts distributed in a data center

Operator placement
Resource allocation: CPU, net bandwidth

Today’s large volumes of queries and workload data can exhaust resources and cause overload
Distributed stream processing system (DSPS)

Set of hosts distributed in a data center

- Operator placement
- Resource allocation: CPU, net bandwidth

Today’s large volumes of queries and workload data can exhaust resources and cause overload.
Distributed stream processing system (DSPS)

Set of hosts distributed in a data center

Operator placement
Resource allocation: CPU, net bandwidth

Today’s large volumes of queries and workload data can exhaust resources and cause overload
Distributed stream processing system (DSPS)

Set of hosts distributed in a data center

- Operator placement
- Resource allocation: CPU, net bandwidth

Today’s large volumes of queries and workload data can exhaust resources and cause overload
Problem overview

We randomly discard/shedd excess tuples.

1: Results are meaningful after shedding, e.g. aggregates
2: Shedding feedback
3: Control tuple latency

Problem statement

The number of tuples to randomly discard from IB s.t. the end-to-end latency over time across tuples approaches a user-defined target.
Problem overview

We randomly discard/shed excess tuples

1: Results are meaningful after shedding, e.g. aggregates
2: Shedding feedback
3: Control tuple latency

Solution overview

A feedback controller to randomly discard tuples and maintain end-to-end latency to a target value
Outline

1. Load shedding in data streaming — Motivation
2. Problem overview
3. Latency-based load shedding controller:
 ▶ System model
 ▶ Controller formulation
4. Experiment evaluation
 ▶ Prototype DISSP deployment
5. Conclusions
6. Future research directions
System model

$c_s(t)$: tuple shedding cost, $c_p(t)$: tuple processing cost

tuple latency $\rightarrow \ell(t) \triangleq N(t)c_s(t) + n(t)c_p(t)$

if T is the target latency, we seek n^* such that:

$$N(t)c_s(t) + n^*(t)c_p(t) = T$$
Latency-based controller

\[n(t + 1) = n(t) + pe(t - \tau(t)), \text{where: } e(t) \triangleq n^*(t) - n(t) \]

\[n(t + 1) = n(t) + qn(t) \frac{T - \ell(t - \tau(t))}{T}. \]
Evaluation

Workload

- Resource provisioning scenario over PlanetLab nodes
- Query: what is the average CPU consumption every second over ten server machines from the PlanetLab network.
- Ten source processes generate data from real-world traces of resource utilisations of PlanetLab nodes
- Time-varying tuple rate: 50t/s → 100t/s → 150t/s → 100t/s → 50t/s

Experimental setup

- Prototype single-node deployment of DISSP
- 2 server machines (4 CPU cores, 1.8 GHz, 4GB memory)
Queries performance without the controller

DISSP cannot run more than 80 queries.
Queries performance with the controller

- mean tuple latency is controlled for various target values T
DISSP performance with the controller

- DISSP utilises a high % of CPU resources effectively
- For T, the controller keeps T tuples
Overload management approaches

State-of-the-art
- Operator/stream re-use
- Query admission control
- Query rewriting
- e.g. System S from IBM
- Massively scalable systems, e.g. twitter Storm, Yahoo S4

Overload conditions still exist, e.g.
- Just before overload detection, during workload fluctuations
- Utilisation of load shedding to reduce additional costs

Related work

"Load Shedding in Stream Databases: A Control-Based Approach", by Tu et al, in VLDB 2006
Future Research Directions

- Heterogeneous workload with various queries
- Distributed stream processing systems
- Semantic shedding to minimise application performance loss
- Explore feedback control methods for the big data management
Conclusions

- Controller for overload in data stream processing systems
- Latency-based controller
- Single-node evaluation on homogeneous workload
- Results show that the avg latency can be controlled effectively

Thank you! Any questions?
ekalyv@doc.ic.ac.uk
http://lsds.doc.ic.ac.uk/research
Queries latency performance

- mean latency is very close to target T
- latency variation remains small
Controller formulation

Equations:
\[n(t + 1) = n(t) + pe(t - \tau(t)) \]
\[e(t) \triangleq n^*(t) - n(t) \]
\[N(t)c_s(t) + n^*(t)c_p(t) = T \]
give

\[n(t + 1) = n(t) + p\frac{T - \ell(t - \tau(t))}{c_s(t - \tau(t)) + c_p(t - \tau(t))} \]

\[n(t + 1) = n(t) + qn(t)\frac{T - \ell(t - \tau(t))}{T}, \]
we choose a small control gain \(q \) for controller’s stability