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Abstract— We propose two distributed algorithms, one for
solving the weight-balance problem and another for solving
the bistochastic matrix formation problem, in a distributed
system whose components (nodes) can exchange information via
interconnection links (edges) that form an arbitrary, possibly
directed, strongly connected communication topology (digraph).
Both distributed algorithms achieve their goal asymptotically
and operate iteratively by having each node adapt the (non-
negative) weights on its outgoing edges based on the weights
of its incoming links.The weight-balancing algorithm is shown
to admit geometric convergence rate, whereas the second
algorithm, which is a modification of the weight-balancing
algorithm, leads asymptotically to a bistochastic digraph with
geometric convergence rate for a certain set of initial values.
The two algorithms perform better than existing approaches,
as illustrated by the examples we provide.

I. INTRODUCTION

A distributed system or network consists of a set of
subsystems (nodes) that can share information via connection
links (edges), which form a generally directed communi-
cation topology (digraph). This digraph typically proves to
be of vital importance for our ability to apply distributed
strategies and perform various tasks. Cooperative distributed
control algorithms and protocols have received tremendous
attention over the last decade by several diverse research
communities (e.g., biology, physics, control, communication,
and computer science), resulting in many recent advances in
consensus-based approaches (see, for example, [1]–[7] and
references therein).

In general, the objective of a consensus problem is to
have the components of a distributed system agree upon a
certain (a priori unknown) quantity of interest. When the
components reach agreement, we say that the distributed
system reaches consensus. Typical tasks include network
coordination problems involving self-organization, formation
patterns, parallel processing, and distributed optimization.
One of the most well known consensus problems is the so-
called average consensus problem in which components aim
to reach the average of their initial values. The initial value
associated with each component might be, for instance, a
sensor measurement of some signal [8], the Bayesian belief
of a decision to be taken [9], or the capacity of distributed
energy resources for the provisioning of ancillary services
[10]. Average consensus is closely related to two classes of
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graphs: weight-balanced (for continuous-time systems) and
bistochastic graphs (for discrete-time systems). A weighted
digraph is called balanced if, for each node vj , the sum of
the weights of the edges outgoing from that node is equal to
the sum of the weights of the edges incoming to that node.
A weight-balanced digraph is bistochastic if all weights are
nonnegative and, for each node vj , the sum of weights of
edges incoming to that node and the sum of the weights of
edges out-going from that node is unity; this implies that the
corresponding weight matrix is column and row stochastic
(i.e., doubly stochastic or bistochastic).

It is shown in [2] that average consensus is achieved if the
information exchange topology is both strongly connected
and balanced, while gossip algorithms [11], [12] and con-
vex optimization [13] admit update matrices which need
to be doubly stochastic. These methods have applicability
to a variety of topics, such as multi-component systems,
cooperative control, and modeling the behaviour of various
phenomena in biology and physics, such as flocking. Since
their operation requires weight-balanced and bistochastic
digraphs, it is important to be able to distributively transform
a weighted digraph to a weight-balanced or bistochastic one,
provided that each node is allowed to adjust the weight of
its outgoing links accordingly.

In this paper, we address the problem of designing
discrete-time coordination algorithms that allow a networked
system to distributively obtain a set of weights that make
it weight-balanced or bistochastic. This task is relatively
straightforward when the underlying communication topol-
ogy forms an undirected graph (i.e., when communication
links are bi-directional) but more challenging when dealing
with a digraph (i.e., when some communication links might
be uni-directional). The paper proposes two algorithms that
can be used in distributed networks with directed intercon-
nection topologies; the first algorithm leads to a weight-
balanced digraph whereas the second algorithm leads to a
bistochastic digraph. Even though there exist some earlier
approaches in the literature for weight balancing (e.g., [14]
presents a finite-time algorithm but does not characterize
the number of steps required in the worst case, whereas
[15] presents an asymptotic algorithm whose rate is bounded
explicitly based on the structure of the graph), the algorithm
for weight-balancing is, to the best of our knowledge, the
first asymptotic algorithm of this nature shown to admit
geometric convergence rate. Work in the literature appears
for bistochastic matrix formation as well (e.g., [16] pro-
poses an asymptotic algorithm with an unspecified rate
of convergence). Our proposed algorithm for obtaining a
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bistochastic digraph is a modification of the weight-balancing
algorithm that leads to a bistochastic digraph with asymptotic
convergence. Under some minor additional assumptions, this
second algorithm can also be shown to admit a geometric
rate.

The remainder of the paper is organised as follows. In
Section II, we provide necessary notation and background
on graph properties. In Section III, the problem to be
solved is formulated, and Sections IV and V present our
main results in which we propose two algorithms, one for
weight-balancing and one for bistochastic matrix formation.
In Section VI, the derived algorithms are demonstrated
via illustrative examples which compare their performance
against existing approaches in the literature. Finally, Section
VII presents concluding remarks and future directions.

II. NOTATION AND PRELIMINARIES

The sets of real, integer and natural numbers are denoted
by R, Z and N, respectively; their positive orthant is denoted
by the subscript + (e.g. R+). The symbol N0 denotes
the set of nonnegative integers. Vectors are denoted by
small letters whereas matrices are denoted by capital letters;
A−1 denotes the inverse of matrix A. By I we denote the
identity matrix (of appropriate dimensions), whereas by 1 we
denote a column vector (of appropriate dimension) whose
elements are all equal to one. A matrix whose elements
are nonnegative, called nonnegative matrix, is denoted by
A ≥ 0 and a matrix whose elements are positive, called
positive matrix, is denoted by A > 0. Notation σ(A) denotes
the spectrum of matrix A, λ(A) denotes an element of the
spectrum of matrix A, and ρ(A) denotes its spectral radius.
Notation diag(xi) is used to denote the matrix with elements
in the finite set {x1, x2, ..., xi, ...} on the leading diagonal
and zeros elsewhere.

Let the exchange of information between nodes be mod-
eled by a weighted digraph (directed graph) G(V, E ,W ) of
order n (n ≥ 2), where V = {v1, v2, . . . , vn} is the set of
nodes, E ⊆ V × V − {(vj , vj) | vj ∈ V} is the set of edges,
and W = [wji] ∈ Rn×n

+ is a weighted n× n adjacency
matrix where wji are nonnegative elements. A directed edge
from node vi to node vj is denoted by εji = (vj , vi) ∈ E ,
which represents a directed information exchange link from
node vi to node vj , i.e., it denotes that node vj can receive
information from node vi. A directed edge εji ∈ E if and
only if wji > 0. Note that the definition of G excludes
self-edges (though self-weights are added when we consider
bistochastic digraphs). The graph is undirected if and only if
εji ∈ E implies εij ∈ E and wji = wij . Note that a digraph
G(V, E) can be thought of as a weighted digraph G(V, E ,W )
by defining the weighted adjacency matrix W with wji = 1
if εji ∈ E , and wji = 0 otherwise.

A digraph is called strongly connected if for each pair of
vertices vj , vi ∈ V , vj 6= vi, there exists a directed path from
vi to vj , i.e., we can find a sequence of vertices vi ≡ vl0 , vl1 ,
..., vlt ≡ vj such that (vlτ+1 , vlτ ) ∈ E for τ = 0, 1, ..., t− 1.
All nodes that can transmit information to node vj directly
are said to be in-neighbors of node vj and belong to the

set N−j = {vi ∈ V | εji ∈ E}. The cardinality of N−j ,
is called the in-degree of j and it is denoted by D−j . The
nodes that receive information from node j comprise its out-
neighbors and are denoted by N+

j = {vl ∈ V | εlj ∈ E}.
The cardinality of N+

j , is called the out-degree of vj and
it is denoted by D+

j . Given a weighted digraph G(V, E ,W )

of order n, the total in-weight of node vj is denoted as S−j
and is defined by S−j =

∑
vi∈N−j

wji, whereas the total
out-weight of node vj is denoted by S+

j and is defined as
S+
j =

∑
vl∈N+

j
wlj .

Definition 1: A weighted digraph G(V, E ,W ) is called
weight-balanced if the total in-weight equals the total out-
weight, i.e., S−j = S+

j for every node vj ∈ V . A weight-
balanced digraph is also called doubly stochastic (bistochas-
tic) if its weights are nonnegative and each of its weighted
adjacency matrix rows and columns sums to 1.

For the discrete-time setup we investigate, we conveniently
define the time coordinate so that unity is the time between
consecutive iterations. For example S+

j [k] will denote the
value of the out-weight of node vj at time instant k, k ∈ N0.

III. PROBLEM FORMULATION

Given a strongly connected digraph G(V, E), we want
distributed algorithms that allow the nodes to adjust the
weight on their outgoing edges to obtain a weight matrix
W = [wji] such that the following are achieved.

(i) The weighted digraph becomes balanced in a dis-
tributed fashion; i.e., a weight matrix W is found such
that wji > 0 for each edge (vj , vi) ∈ E , wji = 0 if
(vj , vi) /∈ E , and S+

j = S−j for every vj ∈ V .
(ii) The weighted digraph becomes bistochastic in a dis-

tributed fashion; i.e., a weight matrix W is found with
nonnegative diagonal elements wjj ≥ 0, such that
wji > 0 if (vj , vi) ∈ E , wji = 0 if (vj , vi) /∈ E ,
vj 6= vi), and wjj + S+

j = wjj + S−j = 1 for every
vj ∈ V .

IV. DISTRIBUTED ALGORITHM FOR WEIGHT-BALANCING

A. Description of the algorithm

Balancing a weighted digraph can be accomplished via
a variety of algorithms. We introduce and analyse a dis-
tributed cooperative algorithm that exhibits asymptotic con-
vergence and outperforms existing algorithms suggested in
the literature [17]. The algorithm achieves weight-balance
as long as the underlying digraph is strongly connected (or
is a collection of strongly connected digraphs, a necessary
and sufficient condition for balancing to be possible [18]).
The rate of convergence of the algorithm is geometric and
depends exclusively on the structure of the given digraph and
some constant parameters chosen by the nodes.

Algorithm 1 is an iterative algorithm in which the nodes
distributively adjust the weights of their outgoing links such
that the digraph becomes asymptotically weight-balanced.
We assume that each node observes but cannot set the
weights of its incoming links. Given a strongly connected
digraph G(V, E), the distributed algorithm has each node vj
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initialize the weights of all of its outgoing links to unity,
i.e., wlj [0] = 1, ∀vl ∈ N+

j . Then, node vj enters an iterative
stage where it performs the following steps:

1) It computes its weight imbalance defined by

xj [k] , S−j [k]− S+
j [k]. (1)

2) If xj [k] is positive (resp. negative), all the weights of
its outgoing links are increased (resp. decreased) by an
equal amount and proportionally to xj [k].

We discuss why the above distributed algorithm asymptot-
ically leads to weights that balance the graph (and also
characterize its rate of convergence) after we describe the
algorithm in more detail. For simplicity, we assume that
during the execution of the distributed algorithm, the nodes
update the weights on their outgoing links in a synchronous1

fashion. Also note that 2) above implies that wlj for vl ∈ N+
j

will always have the same value.

Algorithm 1 Weight balancing algorithm
Input: A strongly connected digraph G(V, E) with n = |V|
nodes and m = |E| edges (and no self-loops).
Initialization: Each node vj ∈ V
1) Sets wlj [0] = 1, ∀vl ∈ N+

j .
2) Chooses βj ∈ (0, 1).
Iteration: For k = 0, 1, 2, . . ., each node vj ∈ V updates the
weights of each of its outgoing links wlj , ∀vl ∈ N+

j , as

wlj [k + 1] = wlj [k] + βj

(
S−j [k]

D+
j

− wlj [k]

)
. (2)

The intuition behind the proposed algorithm is that we
compare S−j [k] with S+

j [k] = D+
j wlj [k]. If S+

j [k] > S−j [k]

(resp. S+
j [k] < S−j [k]), then the algorithm reduces (resp.

increases) the weights on the outgoing links.
Proposition 1: If a digraph is strongly connected or is

a collection of strongly connected digraphs, Algorithm 1
reaches a steady state weight matrix W ∗ that forms a weight-
balanced digraph, with geometric convergence rate equal to
R∞(P ) = − ln δ(P ), where

Pji ,

{
1− βj , if i = j,
βj/D+

j , if vi ∈ N−j ,
(3)

and δ(P ) , max{|λ| : λ ∈ σ(P )), λ 6= 1}.
Proof: First, we observe from equation (2) that all

the outgoing links have the same weight, i.e., wl′j = wlj ,
∀vl′ , vl ∈ N+

j (because they are equal at initialization and
they are updated in the same fashion). The fact that the
outgoing links have the same weight facilitates broadcasting
of the weights, avoiding separate transmissions or multiple
broadcastings. Hence, from hereafter, we will denote the
weight on any outgoing link of node vj as wj . In order
to study the system with update formula (2) for each node

1Even though we do not discuss this issue in the paper, asynchronous
operation is not a problem.

in the graph, we define w = (w1 w2 . . . wn)T with
wj = wlj (vl ∈ N+

j ). We can write the evolution of the
weights in matrix form as follows.

w[k + 1] = Pw[k], w[0] = w0 , (4)

where w0 = 1. It should be clear from the above update
equation that the weights remain nonnegative during the
execution of the algorithm.

Matrix P can be written as P = I−B+BD−1A, where I
is the identity matrix, B = diag(βj), D = diag(D+

j ) and A
is the adjacency matrix with aji = 1 if εji ∈ E , and aji = 0
otherwise. Since σ(D−1A) = σ(AD−1), then ρ(D−1A) =
ρ(AD−1). In addition, ρ(AD−1) = 1 because matrix AD−1

is column stochastic. As a result, ρ(D−1A) = 1. Also, note
that P̄ , I−B+AD−1B is column stochastic and therefore
ρ(P̄ ) = 1. Furthermore,

ρ(P̄ ) = ρ(P̄B−1DD−1B) = ρ(D−1BP̄B−1D)

= ρ(I −B +BD−1A) = ρ(P ) = 1.

Since P is a nonnegative matrix, we can ask whether P is
primitive,2 i.e., whether Pm > 0 for some m ≥ 1. Since the
digraph is strongly connected for 0 < βj < 1, ∀vj ∈ V , and
all the main diagonal entries are positive, we easily conclude
that m ≤ n − 1 [19, Lemma 8.5.5] and P is primitive.
Hence, there is no other eigenvalue with modulus equal to
the spectral radius. A sufficient condition for primitivity is
that a nonnegative irreducible matrix A has at least one
positive diagonal element [20, Example 8.3.3], which means
that some βj can also be set at unity (as long as at least
one is strictly smaller than unity). Hence, iteration (4) has
a geometric convergence rate R∞(P ) = − ln δ(P ), where
δ(P ) , max{|λ| : λ ∈ σ(P )), λ 6= 1}. In other words, δ(P )
is the second largest of the moduli of the eigenvalues of P
(see also [1], [2], [4]).

B. Illustrative Example

In this illustrative example (borrowed from [18]), we
demonstrate the validity of the proposed algorithm in the
network depicted in Figure 1. In our plots we are typically
concerned with the absolute balance defined as ε[k] =∑n

j=1 |xj [k]|, where xj [k] is given in (1). If weight balance
is achieved, then ε[k] = 0 and xj [k] = 0, ∀vj ∈ V .

Figure 2 plots the absolute balance of Algorithm 1 when
βj = 0.1 or 0.5 or 0.9 for all vj ∈ V , as it evolves during the
execution of the algorithm. These plots agree with the claims
in Proposiion 1 and validate that the algorithm convergences
to a weight-balanced digraph with geometric convergence
rate. In this particular example, with the choice of βj = 0.1
or 0.5 or 0.9, the rate discussed in the proof of Proposition 1
is given by R∞

(
P (βj)

)
= 0.1204, 0.5180 and 0.2524, re-

spectively.
The final weight-balanced digraph W ? is the same for all

three cases mentioned above (because all the βj are identical
— but equal to a different constant each time) and is given
by

2A nonnegative matrix is said to be primitive if it is irreducible and has
only one eigenvalue of maximum modulus [19].
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v1 v2

v3 v4

Fig. 1. A simple digraph which is weight-balanceable, but not bistochasti-
cable due to the absence of self-loops. This example is given in [18] in order
to indicate that not all strongly connected digraphs are bistochasticable.
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Fig. 2. Absolute balance for weight-balancing algorithm (Algorithm 1) for
the digraph depicted in Figure 1.

W ? =

 0 0 0.7143 0.7143
1.4286 0 0 0

0 1.4286 0 0
0 0 0.7143 0

 .

Remark 1: If βj = 1, ∀vj ∈ V , then the weighted
adjacency matrix P is not necessarily primitive and hence the
algorithm does not converge to weights that form a weight-
balanced digraph.

V. DISTRIBUTED ALGORITHM FOR BISTOCHASTIC
MATRIX FORMATION

A. Description of the algorithm

An algorithm is proposed, herein called Algorithm 2,
with which a bistochastic adjacency matrix is formed in a
distributed fashion. One extra requirement for Algorithm 2,
however, is to maintain column stochasticity of the weighted
adjacency matrix W [k] for all times k, so that it can
be used for consensus problems without the need to first
form the bistochastic matrix (the details can be found in
[18]). More specifically, we obtain a sequence of column
stochastic matrices W [0],W [1],W [2], . . . ,W [k] such that
limk→∞W [k] = W is bistochastic and thus the iteration
x[k+ 1] = W [k]x[k], x[0] = x0, reaches average consensus
asymptotically [16].

Digraphs that are weight-balanceable do not necessarily
admit a doubly stochastic assignment [18, Theorem 4.1].
However, if self-weights are added then any strongly con-
nected graph is bistochasticable after adding enough self-

loops [18, Corollary 4.2]. Algorithm 2 overcomes this prob-
lem with the introduction of nonzero self weights wjj at
each node vj ∈ V , and by appropriately adjusting them in a
distributed manner. Algorithm 2 is described in detail below.

Algorithm 2 Bistochastic matrix formation algorithm
Input: A strongly connected digraph G(V, E) with n = |V|
nodes and |E| edges (and no self-loops).
Initialization: Set wlj [0] = 1/(1 +D+

j ), ∀vl ∈ N+
j ∪ {j}.

Iterations: For k = 0, 1, 2, . . ., each node vj ∈ V updates
the weights wlj , vl ∈ N+

j , by performing the following
steps:
1) It chooses βj [k] as follows:

βj [k] =

αj
1−S+

j [k]

S−j [k]−S+
j [k]

, S−j [k] > S+
j [k],

αj , otherwise,
(5)

where αj ∈ (0, 1).
2) It updates

wlj [k + 1] = wlj [k] + βj [k]

(
S−j [k]

D+
j

− wlj [k]

)
, (6)

for all vl ∈ N+
j . [This is the same update as Algorithm 1,

with the difference that the proportionality constant βj can be
adapted at each time step k, and is chosen so that S+

j [k+1] ≤
1 (so as to ensure that wjj can be chosen in Step 3 to be
nonnegative and satisfy wjj + S+

j [k + 1] = 1).]
3) Then, wjj ≥ 0 is assigned so that the weighted adjacency
matrix retains its column stochasticity; i.e.,

wjj [k + 1] = 1−
∑
l∈N+

j

wlj [k + 1], ∀vj ∈ V. (7)

Proposition 2: If a digraph is strongly connected or is a
collection of strongly connected digraphs, then Algorithm 2
reaches a steady state weight matrix W ∗ that forms a
bistochastic digraph. Furthermore, the weights of all edges
in the graph are nonzero.

Proof: As before, all the outgoing links have the same
weight, i.e., wl′j = wlj , ∀vl′ ∈ N+

j . Thus, the evolution of
the weight wj , wlj , ∀vl ∈ N+

j , can be written in matrix
form as follows.

w[k + 1] = P [k]w[k], w[0] = w0 , (8)

where

Pji[k] ,

{
1− βj [k] if i = j,
βj [k]/D+

j if i ∈ N−j .
(9)

In order to make sure that the sum of each column can be
made one by choosing a nonnegative self-weight wjj , we
need to establish (for all k) that S+

j [k+1] ≤ 1 or wlj [k+1] ≤
1/D+

j , for all vl ∈ N+
j . In our updates, there are two cases:

(a) S−j [k] ≤ S+
j [k], and (b) S−j [k] > S+

j [k]; we analyze both
cases below.
(a) When S−j [k] ≤ S+

j [k], then βj [k] can be chosen to be
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any value αj , αj ∈ (0, 1). Then, the algorithm is equivalent
to Algorithm 1.
(b) When S−j [k] > S+

j [k], then wlj [k + 1], ∀vl ∈ N+
j , are

increased. In order to avoid having S+
j [k+1] > 1 or wlj [k+

1] > 1/D+
j for any vl ∈ N+

j , we choose βj [k] as shown in
equation (5). In this case, for any initial S+

j [0] for which
S−j [k] > S+

j [k], we obtain from (6) that

S+
j [k + 1] = S+

j [k] + αj(1− S+
j [k]) = (1− αj)S

+
j [k] + αj .

Hence, it is guaranteed that S+
j [k + 1] < 1, and as a result,

βj [k] 6= 0 for all k. It can be easily shown by perfect
induction that after n steps (for which S−j [k+r] > S+

j [k+r]
holds for all r ∈ Z+, r ≤ n) we have

S+
j [k + n] = 1− (1− αj)

n(1− S+
j [k]),

which approaches 1 as n → ∞. Note that someone can
choose αj ∈ (0, 1) closer to 1 and guarantee that βj [k] > ε,
ε > 0, for all the iterations k.

Unlike the case of Algorithm 1, in Algorithm 2 we have
a discrete-time switching dynamical system whose stability
and convergence rate are not as easily characterized. As
indicated by the various simulations we have tried (as well
as the special case identified by the remark below), it is
very likely that the rate of convergence of Algorithm 2 is
geometric, however, this has not been formally established
thus far.

Proposition 3: If a digraph is strongly connected or is
a collection of strongly connected digraphs, Algorithm 2
with initial condition wLj [0] = 1

m(1+D+
j )

, ∀vL ∈ N+
j ,m ≥

|V|, reaches a steady state weight matrix W ∗ that forms a
bistochastic digraph, with geometric convergence rate equal
to R∞(P ) = − ln δ(P ), where

Pji[k] ,

{
1− αj if i = j,
αj/D+

j if i ∈ N−j .

Furthermore, the weights of all edges in the graph are
nonzero.

Proof: If it is possible for each node to know the
number of nodes in the graph, or at least an upper bound,
then we can set wLj [0] = 1

m(1+D+
j )

for all vL ∈ N+
j , where

m ≥ |V|. Hence, we establish that S−j [0] < 1 and S+
j [0] < 1

for all vj ∈ V . By equation (6) we have that

S+
j [k + 1] = (1− βj [k])S+

j [k] + βj [k]S−j [k] ,

which guarantees that S+
j [k] < 1 and that βj [k] = αj , for all

k. The self-weights are chosen so that we make each column
sum up to one (and consequently the row sums, once the
algorithm converges). Therefore, with these initial conditions
we can choose βj [k] to be constant (and equal to αj ∈ (0, 1))
throughout the execution of the algorithm, and hence, admit
geometric convergence rate (because we are essentially back
to Algorithm 1 with the only difference that we also calculate
the value of the self-weight (equal to 1 − D+

j wj [k]) each
time). Therefore, Algorithm 2 has a geometric convergence
rate R∞(P ) = − ln δ(P ), as in Algorithm 1.

B. Illustrative Example

We consider a random strongly connected graph consisting
of 50 nodes. The quantity of interest in this case is the abso-
lute balance of the graph at time step k; the absolute balance
Ab[k] is defined as Ab[k] =

∑
vj∈V

∣∣∣1−∑vi∈N−j
wji[k]

∣∣∣.
Since the weight matrix at each time step is column stochas-
tic by construction, Ab[k] effectively measures the distance
of the weight matrix at time step k from a bistochastic matrix.
As it can be seen from Figure 3, the algorithm asymptotically
converges to a bistochastic adjacency matrix for different
values of αj (in the simulations αj is chosen to be 0.9 or
0.5 or 0.1 for all vj ∈ V).
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αj=0.9 for all vj
αj=0.5 for all vj
αj=0.1 for all vj

Fig. 3. Absolute balance for bistochastic formation algorithm (Algorithm 2)
for different values of αj ∀vj ∈ V . It can be observed that Algorithm 2
converges to a bistochastic adjacency matrix asymptotically.

VI. COMPARISONS

A. Weight-Balanced Matrix Formation

Here we run the proposed algorithm in larger graphs (of
size n = 50) and we compare the performance of our
algorithm against two current state-of-the-art approaches: (a)
the imbalance-correcting algorithm in [14] in which every
node vj adds all of its weight imbalance xj to the outgoing
node with the lowest weight w, and (b) the weight balancing
algorithm in [15] in which each node vj with positive
imbalance xj > 0, increases the weights of its outgoing links
by an equal amount so that it becomes weight-balanced.

The proposed weight-balancing algorithm (Algorithm 1)
shows geometric convergence and outperforms the algo-
rithms suggested in [14], [15], as shown in Figure 4.

B. Bistochastic Matrix Formation

Here we run the algorithm for larger graphs (of size
n = 50) and we compare the performance of our algorithm
against a distributed algorithm suggested in [16] in which
every node vj ∈ V first chooses a particular weight wjj [k] ∈
(0, 1) for its self weight and it sets the weights of its outgoing
links to be wlj [k] = clj(1 − wjj [k]), where clj > 0,
∀vl ∈ N+

j , and
∑

vl∈N+
j
clj = 1. The suggested bistochastic

formation algorithm (Algorithm 2) shows asymptotic conver-
gence and slightly outperforms the algorithm suggested in
[16] for αj = 0.95, ∀vj ∈ V , as shown in Figure 5.
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Fig. 4. Top figure: Absolute balance plotted against the number of iterations
for a random graph of 50 nodes for the distributed weight-balancing (Algo-
rithm 1) algorithm, the imbalance-correcting algorithm [14], and the weight-
balancing algorithm proposed in [15]. Bottom figure: Absolute balance
plotted against the number of iterations for a 1000 random graphs of 50
nodes for Algorithm 1, the imbalance-correcting algorithm [14], and the
weight-balancing algorithm proposed in [15].

VII. CONCLUSIONS

In this paper we have developed two iterative algorithms:
one for balancing a weighted digraph and one for forming a
bistochastic adjacency matrix in a digraph. Both algorithms
are distributed and asymptotic. The weight-balancing algo-
rithm is shown to admit geometric convergence rate, while
the second algorithm, a modification of the weight-balancing
algorithm, leads to a bistochastic digraph with asymptotic
convergence, and can be shown to admit geometric con-
vergence rate for a certain set of initial values. The two
algorithms are illustrated via examples and are shown to
perform very well compared to existing algorithms.
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