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Optimal Merging Algorithms for Lossless
Codes With Generalized Criteria

Themistoklis Charalambous, Member, IEEE, Charalambos D. Charalambous, Senior Member, IEEE,
and Farzad Rezaei, Member, IEEE

Abstract— This paper presents lossless prefix codes optimized
with respect to a payoff criterion consisting of a convex com-
bination of maximum codeword length and average codeword
length. The optimal codeword lengths obtained are based on
a new coding algorithm, which transforms the initial source
probability vector into a new probability vector according to a
merging rule. The coding algorithm is equivalent to a partition of
the source alphabet into disjoint sets on which a new transformed
probability vector is defined as a function of the initial source
probability vector and scalar parameter. The payoff criterion con-
sidered encompasses a tradeoff between maximum and average
codeword length; it is related to a payoff criterion consisting of a
convex combination of average codeword length and average of
an exponential function of the codeword length, and to an average
codeword length payoff criterion subject to a limited length
constraint. A special case of the first related payoff is connected
to coding problems involving source probability uncertainty and
codeword overflow probability, whereas the second related payoff
compliments limited length Huffman coding algorithms.

Index Terms— Lossless coding, merging algorithms, multi-
objective criteria.

I. INTRODUCTION

LOSSLESS fixed to variable length source codes are
usually examined under known source probability dis-

tributions, and unknown source probability distributions. For
known source probability distributions there is an extensive
literature which aims at minimizing various pay-offs such
as the average codeword length [2, Sec. 5.3], the average
redundancy of the codeword length [3], [4], the average of
an exponential function of the codeword length [5]–[7], the
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average of an exponential function of the redundancy of the
codeword length [4], [7], [8], and the probability of code-
word length overflow [9], [10]. On the other hand, universal
coding and universal modeling, and the so-called Minimum
Description Length (MDL) principle are often examined via
minimax techniques, when the source probability distribution
is unknown, but belongs to a pre-specified class of source
distributions [3], [11]–[14]. With respect to the above pay-
offs, the choice of real-valued codeword lengths yields the
global optimum. However, the codeword lengths must be
integers. Towards this end, Shannon-Fano codes [15], [16]
provide integer codeword lengths according to the real-valued
codeword lengths that are sub-optimal in the sense that they
do not achieve the lowest possible expected codeword length,
while Huffman codes [17] find the optimal codeword lengths
by treating them as integers. Coding algorithms for general
pay-off criteria involving pointwise redundancy, average expo-
nential redundancy, and maximum pointwise redundancy are
found in [18]. This work is also related to [19] in which they
consider vector quantization, where the rate is measured by a
convex combination of the entropy and the logarithm of the
codebook size.

The main objectives of this paper are to introduce a new
pay-off criterion consisting of a convex combination of the
maximum codeword and average codeword length, to derive
lossless prefix codes, to discuss the implication of these
codes to variable length coding applications, and to identify
relations of the new pay-off to other pay-offs addressed in
the literature. The criterion considered incorporates a trade-
off between average codeword length and maximum codeword
length, which brings out a trade-off between data compres-
sion and delay (codeword length). By allowing lower data
compression the transmission delay is reduced, since the
maximum codeword length is reduced; on the other hand,
by requiring that codeword lengths are limited in size, the
data compression is compromized. This feature renders the
new coding algorithm suitable for evading the risk of buffer
overflow in variable length coding applications [6], [9], [10],
[20] and in length-sensitive coding applications [21], [22].
Example of such short-block, delay sensitive communications
applications, include network coding and separate source and
channel coding over networks (see [23], [24]). The new pay-off
is shown to encompass, as a special case, some of the pay-
off criteria investigated in the literature. For example, limited-
length coding problems defined by minimizing the average
codeword length subject to a maximum codeword length

0018-9448 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



CHARALAMBOUS et al.: OPTIMAL MERGING ALGORITHMS FOR LOSSLESS CODES WITH GENERALIZED CRITERIA 5487

constraint constitute a special case. This connection provides
Shannon-Fano type codes, and complements the work on
limited-length Huffman codes [25], [26]. In general, limited-
length coding problems are of interest in various applications,
such as distributed systems which are delay-sensitive and
require short codewords or/and fast coders with short code
table size. In addition, as it is shown in the paper, this pay-
off can be easily generalized to universal coding in which the
source probability vector belongs to a class.

The new pay-off criterion considered is discussed under
Problem 1 of Section I-A, while its connections to other pay-
off criteria such as limited-length codes and codes obtained
via convex combination of average and exponential function of
the codeword length are discussed in Sections III-B and III-C,
respectively.

A. Problem Formulation and Discussion of Results

Consider a source with alphabet X �= {x1, x2, . . . , x|X |}
of cardinality |X |, generating symbols according to the

probability distribution p
�= {p(x) : x ∈ X } ≡(

p(x1), p(x2), . . . , p(x|X |)
)
. Source symbols are encoded into

D−ary codewords. A code C �= {c(x) : x ∈ X } for symbols

in X with image alphabet D �= {0, 1, 2, . . . , D − 1} is
an injective map c : X → D∗, where D∗ is the set of
finite sequences drawn from D. For x ∈ X each codeword
c(x) ∈ D∗, c ∈ C is identified with a codeword length
l(x) ∈ Z+, where Z+ is the set of non-negative integers. Thus,
a code C for source symbols from the alphabet X is associated
with the length function of the code l : X → Z+, and a

code defines a codeword length vector l
�= {l(x) : x ∈ X } ≡(

l(x1), l(x2), . . . , l(x|X |)
) ∈ Z

|X |
+ . Since a function l :X→ Z+

is the length function of some prefix code if, and only if,
the Kraft inequality holds [2, Sec. 5.2], then the admissible

set of codeword length vectors is defined by L
(
Z
|X |
+

) �=
{

l ∈ Z
|X |
+ : ∑

x∈X D−l(x) ≤ 1
}
. On the other hand, if the

integer constraint is relaxed by admitting real-valued length
vectors l ∈ R

|X |
+ , which satisfy the Kraft inequality, such as

Shannon codes or arithmetic codes, then L
(
Z
|X |
+

)
is replaced

by L
(
R
|X |
+

) �=
{

l ∈ R
|X |
+ :

∑
x∈X D−l(x) ≤ 1

}
. Such codes

are useful in obtaining approximate solutions which are less
computationally intensive [2, Section 5.3]. Without loss of
generality, it is assumed that the set of probability distributions
is defined by

P(X )
�=

{
p =

(
p(x1), . . . , p(x|X |)

)
∈ R
|X |
+ : p(x|X |) > 0,

p(xi ) ≤ p(x j ),∀i > j, (xi, x j ) ∈ X ,
∑

x∈X
p(x) = 1

}
.

Unless specified otherwise, the following notation is used:

log(·) �= logD(·), and H(p) is the entropy of the probability
distribution p.

The main pay-off considered is a convex combination of
the maximum codeword length and the average codeword
length. Specifically, a parameter α ∈ [0, 1] is introduced
which weights the maximum codeword length, while (1− α)

weights the average codeword length, and as this parameter
moves away from α = 0, more weight is put on reducing
the maximum codeword length, thus the maximum length of
the code is reduced resulting in a more balanced code tree.
Such a pay-off is particularly important in applications where
the codeword lengths are bounded by a specific constant. The
main problem investigated is stated below.

Problem 1: Given a known source probability vector
p ∈ P(X ) and weighting parameter α ∈ [0, 1], find a
prefix codeword length vector l† ∈ R

|X |
+ which minimizes the

Maximum and Average Length pay-off Lα(l, p) defined by

Lα(l, p)
�=

{
α‖l‖∞ + (1− α)

∑

x∈X
l(x)p(x)

}
, (1)

where, by definition, ‖l‖∞ is equivalent to the maximum
length among the codeword lengths maxx∈X l(x), i.e., ‖l‖∞ ≡
maxx∈X l(x).
The presence of the �∞ norm (i.e., ||l||∞) in the pay-off
Lα(l, p) makes the characterization of the optimal real-valued
prefix code, which is parametrically dependent on α ∈ [0, 1],
very different from previously known Shannon type codes.
Indeed, it is shown in subsequent sections that the optimal code
corresponding to Problem 1 is equivalent to a specific partition
of the source alphabet, and re-normalization and merging of
entries of the initial source probability vector, as a function
of the parameter α ∈ [0, 1], from which the optimal code is
derived. The single letter performance of the optimal codeword
lengths {l†(x) : x ∈ X } satisfy H(wα) ≤ Lα(l†, p) <

H(wα)+1, where wα
�= {wα(x) : x ∈ X } is a new probability

vector which depends on the initial source probability vector
and the parameter α ∈ [0, 1]. As α ∈ [0, 1] increases, the
optimal code tree moves towards the direction of a more
balanced code tree while there is an αmax ∈ [0, 1] which is
the minimum value beyond which there is no compression.

An algorithm is presented which computes the weight
vector wα via partitioning of the source alphabet, re-
normalization and merging of the initial source probability
vector, for any value of α ∈ [0, 1], having a worst case com-
putational complexity of order O(n). An alternative approach,
making use of epigraph variables, transforms the problem
to a waterfilling-like problem which can then be solved
numerically.

B. Relations to Literature

In Section III-B it is shown that limited-length coding
problems defined by minimizing the average codeword length
subject to a maximum codeword length constraint (Problem 2)
are deduced from the solution of Problem 1 as a special case.
This connection provides Shannon type codes, and comple-
ments the recent work on limited-length Huffman codes [26].
Specifically, given a hard constraint L lim ∈ [1,∞), the
problem of finding a prefix codeword length vector l∗ ∈ R

|X |
+

which minimizes the Average Length Subject to Maximum
Length Constraint pay-off L(l, p) is defined by

L(l, p)
�=

∑

x∈X
l(x)p(x), (2a)

subject to max
x∈X

l(x) ≤ L lim. (2b)
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The optimal code for limited-length codes for (2a), (2b) is
obtained from the optimal code solution of Problem 1. The
complete characterization of the solution to such problems is
given in Section III-B, which also includes an algorithm.

In Section III-C it is shown that Problem 1 is also related
to a general-pay off consisting of a convex combination of
the average codeword length and average of an exponential
function of codeword length (Problem 3) defined by

Lt,α(l, p)
�= α

t
log

(∑

x∈X
p(x)Dtl(x)

)
+ (1−α)

∑

x∈X
l(x)p(x),

(3)

where t ∈ (−∞,∞) is another parameter. Specifically, by
noticing that 1

t log
∑

x∈X p(x)Dtl(x) is a nondecreasing func-
tion of t ∈ [0,∞), and limt→∞ 1

t log
∑

x∈X p(x)Dtl(x) =
maxx∈X l(x), then by replacing α maxx∈X l(x) in Lα(l, p),
by the function α

t log
( ∑

x∈X p(x)Dtl(x)
)

, the resulting pay-
off takes into account moderate values below maxx∈X l(x),
obtaining a two-parameter pay-off (3). The pay-off Lt,α(l, p)
is a convex combination of the average of an exponential
function of the codeword length, and the average codeword
length. The case α = 1 is investigated in [4]–[8], [10],
where relations to minimizing buffer overflow probability are
discussed. Further, it is not difficult to verify that Lt,α|α=1(l, p)
is also the dual problem of universal coding problems, formu-
lated as a minimax, in which the maximization is over a class
of probability distributions which satisfy a relative entropy
constraint with respect to a given fixed nominal probabil-
ity distribution [14], [27]. Hence, the pay-off Lt,α|α=1(l, p)
encompasses a trade-off between universal codes and buffer
overflow probability and average codeword length codes. Since
the pay-off Lt,α(l, p) is in the limit, as t →∞, equivalent to
limt→∞ Lt,α(l, p) = Lα(l, p), ∀α ∈ [0, 1], then the codeword
length vector minimizing Lt,α(l, p) is expected to converge
in the limit as t → ∞, to that which minimizes Lα(l, p).
However, moderate values of t ∈ [0,∞) are also of interest
since the pay-off Lt,α(l, p) can be interpreted as a trade-off
between universal codes and average length codes.

This work is also connected to [19] in which vector
quantization is considered, where the rate is measured by a
convex combination of the entropy H and the logarithm of the
codebook size. More specifically,

Lα(p, N) = αH(p)+ (1− α) log N,

where N is the number of quantizer output symbols (i.e., the
codebook size).

The rest of the paper is organized as follows. Section II
addresses Problem 1 and derives basic results concerning
the partition of the source alphabet, the re-normalization and
merging rule as α ranges over [0, 1]. Here, an algorithm is
presented which describes how the partition of the source
alphabet is characterized. Section III gives the complete char-
acterization of optimal codes corresponding to Problem 1,
the associated coding theorem, and relations to limited-length
coding problems (Problem 2), and coding problems with
general-pay off consisting of a convex combination of the aver-
age codeword length and average of an exponential function

of codeword length (Problem 3). Finally, Section IV presents
the conclusions and identifies open problems for future
research.

II. OPTIMAL WEIGHTS AND MERGING RULE

The main objective of this section is to convert the pay-
off of Problem 1 into an equivalent objective of the form
∑

x∈X wα(x)l(x), where the new weights wα
�= {wα(x) :

x ∈ X } depend parametrically on α ∈ [0, 1]. Subsequently, we
derive certain properties of the new weight vector as a function
of the initial source probability vector and α ∈ [0, 1], and
identify how these properties are transformed into equivalent
properties for the optimal codeword length vector. The main
issue here is to identify how symbols are merged together,
and how the merging changes as a function of the parameter
α ∈ [0, 1] and initial source probability vector, so that the
optimal solution is characterized for all α ∈ [0, 1]. From
these properties the optimal real-valued codeword lengths for
Problem 1 will be found. This merging will also provide
insight in characterizing optimal codes for related problems
(with different pay-offs).

Define l∗ �= ‖l‖∞, U �=
{

x ∈ X : l(x) = l∗
}

. The pay-off
Lα(l, p) can be written as

Lα(l, p) = αl∗ + (1− α)
∑

x∈X
l(x)p(x)

=
(
α + (1− α)

∑

x∈U
p(x)

)
l∗+

∑

x∈U c

(1−α)p(x)l(x),

(4)

which makes the dependence on the disjoint sets U and

Uc �= X \ U explicit. The set U remains to be identified so
that a solution to the coding problem exists for all α ∈ [0, 1].
Note that l∗ ≡ l∗(α) and U ≡ U(α), that is, both the maximum
length and the set of source symbols which correspond to the
maximum length depend parametrically on α ∈ [0, 1]. This
explicit dependence will often be omitted for simplicity of
notation.
Define

∑

x∈U
wα(x) =

(
α + (1− α)

∑

x∈U
p(x)

)
, (5a)

wα(x) = (1− α)p(x), x ∈ Uc. (5b)

In (5a) we define the sum of the weights wα(x) for x ∈ U
instead of the individual weights, since we don’t know the
expression of each individual weight at this stage, but only
their sum.

Using (4) and (5) the pay-off Lα(l, p) is written as a
function of the new weight vector as follows:

Lα(l, p) ≡ L(l, wα)
�=

∑

x∈X
wα(x)l(x), ∀α ∈ [0, 1]. (6)

The new weight vector wα is a function of α and the source
probability vector p ∈ P(X ), and it is defined over the
two disjoint sets U and Uc. It can be easily verified that
0 ≤ wα(x) ≤ 1, ∀x ∈ Uc and

∑
x∈X wα(x) = 1,∀α ∈ [0, 1].
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However, at this stage it cannot be verified that wα(x) ≥ 0,
∀x ∈ U . The next lemma finds the optimal codeword length
vector.

Lemma 1: Let l†(x) and w†
α(x) denote the real-valued pre-

fix codeword lengths and weights minimizing pay-off Lα(l, p).
For α ∈ [0, 1) these prefix codes are given by

l†(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− log
(
(1− α)p(x)

)
= − log w†

α(x), x ∈ Uc

− log

(
α

∑
y∈U c p(y)+∑

z∈U p(z)

|U |

)

, x ∈ U
= − log w†

α(x). (7)

where U and Uc remain to be identified. For α = 1, U = X
and l†(x) = log |X |,∀x ∈ X .

Proof: See Appendix A.
The point to be made regarding Lemma 1 is twofold. Firstly,

since for α ∈ [0, 1) the pay-off Lα(l, p) is continuous in l and
the constraint set defined by Kraft inequality is closed and
bounded (and hence compact), an optimal codeword length
vector l† exists, and secondly the optimal code is given
by (7). From the existence of the solution, it follows that for
α ∈ [0, 1), wα(x) > 0,∀x ∈ U . This can also be deduced by
noticing that the pay-off Lα(l, p) is positive. As a result, all
the weights wα(x) > 0,∀x ∈ U ; otherwise, if there existed
a negative weight wα(x), one could have its corresponding
codeword length to be large enough to make the pay-off
Lα(l, p) negative.

From the characterization of optimal codeword length vector
of Lemma 1 and a well-known inequality, it follows that
Lα(l†, p) = −∑

x∈X wα(x) log w†
α(x) ≥ H(wα) and equality

holds if, and only if, wα(x) = w†
α(x),∀x ∈ X . For this

reason, the weights w†
α(x) that minimize pay-off Lα(l, p)

coincide with the weights wα(x) defined in (5b) for x ∈ Uc.
Therefore, for α ∈ [0, 1) the weights satisfying (5) and
corresponding to the optimal codeword length vector are
uniquely represented via wα = w†

α . Moreover, by rounding

off the optimal codeword lengths via l‡(x)
�= �− log w†

α(x)

[15], [16], Kraft inequality remains valid, while it is concluded
that H(wα) ≤∑

x∈X l‡(x)wα(x) < H(wα)+ 1.
The important observation concerning prefix codeword

length vector l† ∈ R
|X |
+ which minimizes the pay-off

Lα(l, p) =∑
x∈X wα(x)l(x) is that once the weight vector wα

is identified for all α ∈ [0, 1), then the optimal code is given
by l†(x) = − log wα(x), ∀x ∈ X and it is characterized for
all α ∈ [0, 1). The remaining part of this section is devoted to
the problem of identifying the sets U and Uc.

The next lemma describes monotonicity properties of the
weight vector wα as a function of the probability vector p, for
all α ∈ [0, 1).

Lemma 2: Consider pay-off Lα(l, p) and real-valued prefix
codes. The following statements hold:

1. For {x, y} ⊂ X , if p(x) ≤ p(y) then wα(x) ≤ wα(y),
for all α ∈ [0, 1). Equivalently, p(x1) ≥ p(x2) ≥ . . . ≥
p(x|X |) > 0 implies wα(x1) ≥ wα(x2) ≥ . . . ≥
wα(x|X |) > 0, for all α ∈ [0, 1).

2. For y ∈ Uc, wα(y) is a monotonically decreasing function
of α ∈ [0, 1).

3. For x ∈ U , wα(x) is a monotonically increasing function
of α ∈ [0, 1).

Proof: The derivation is straightforward, hence omitted
(for completeness see [28]).

Remark 1: Before deriving the general coding algorithm,
we illustrate by a simple example how the weights wα and the
cardinality of the set U change as a function of α ∈ [0, 1).
Consider the special case when the probability vector p(x) ∈
P(X ) consists of distinct probabilities, e.g., that p(x|X |) <
p(x|X |−1). The goal is to characterize the weights in a subset
of α ∈ [0, 1), such that wα(x|X |) < wα(x|X |−1) holds. Since
U = {x|X |} and |U | = 1, then

Lα(l, p) =
(
α + (1− α)p(x|X |)

)
l∗ +

∑

x∈U c

(1− α)p(x)l(x)

=
∑

x∈X
l(x)wα(x),

where the weights are given by wα(x) = (1−α)p(x), x ∈ Uc

(remember that Uc is the complement of U with respect to X )
and wα(x|X |) = α + (1 − α)p(x|X |) (by Lemma 2). For any
α ∈ [0, 1) such that the condition wα(x|X |) < wα(x|X |−1)
holds, the optimal codeword lengths are given by
− log wα(x), x ∈ X , and this region of α ∈ [0, 1) for
which |U | = 1 is

{
α ∈ [0, 1) : α + (1− α)p(x|X |) < (1− α)p(x|X |−1)

}
.

Equivalently,
{
α ∈ [0, 1) : α <

p(x|X |−1)− p(x|X |)
1+ p(x|X |−1)− p(x|X |)

}
. (8)

Hence, under the condition |U | = 1 (i.e., wα(x|X |) <
wα(x|X |−1)), the optimal codeword lengths are given by

− log wα(x), x ∈ X for α < α1
�= p(x|X |−1)−p(x|X |)

1+p(x|X |−1)−p(x|X |) , while
for α ≥ α1 the form of the minimization problem changes, as
more weights wα(x) are such that x ∈ U , and the cardinality
of U is changed (that is, the partition of X into U and Uc

is changed). Note that when p(x|X |) = p(x|X |−1), in view of
the continuity of the weights wα as a function of α ∈ [0, 1),
the above optimal codeword lengths are only characterized for
the singleton point α = α1 = 0, giving the classical codeword
lengths. For α ∈ (α1, 1) the problem should be reformulated
to characterize its solution over this region for which |U | �= 1.
For example, if we consider the case for which α > α1 and
|U | = 2 the problem can be written as

Lα(l, p) =
(
α + (1− α)

(
p(x|X | + p(x|X |−1)

))
l∗

+
∑

x∈U c

(1− α)p(x)l(x) =
∑

x∈X
l(x)wα(x).

For any α ∈ [α1, 1) such that the condition wα(x|X |−1) <
wα(x|X |−2) holds, the optimal codeword lengths are given by
− log wα(x), x ∈ X and this region is specified by
{

α ∈ [α1, 1) : α + (1− α)
(

p(x|X | + p(x|X |−1)
)

|U |
< (1− α)p(x|X |−2)

}
.
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Equivalently,
{
α ∈ [0, 1) : α1 < α < α2 �

|U |p(x|X |−2)− (p(x|X |)+ p(x|X |−1))

1+ |U |p(x|X |−2)− (p(x|X |)+ p(x|X |−1))

}
. (9)

One can proceed similarly for α > α2 and |U | > 2.
Next, the merging rule which described how the weight
vector wα changes as a function of α ∈ [0, 1) is identified,
such that a solution to the coding problem is completely
characterized for arbitrary cardinality |U |, and not necessarily
distinct probabilities, for any α ∈ [0, 1). Clearly, there is a
minimum α called αmax such that for any α ∈ [αmax, 1] there
is no compression. This αmax will be identified as well.

Consider the complete characterization of the solution, as
α ranges over [0, 1), for any initial probability vector p
(not necessarily consisting of distinct entries). Then, |U | ∈
{1, 2, . . . , |X | − 1} while for |U | = |X |, α ∈ [αmax, 1], there
is no compression since the weights are all equal.
Define

αk
�= min

{
α ∈ [0, 1) : wα(x|X |−(k−1)) = wα(x|X |−k)

}
,

k ∈ {1, . . . , |X | − 1}, α0
�= 0,

�αk
�= αk+1 − αk .

By Lemma 2 the weights are ordered, hence α1 is the smallest
value of α ∈ [0, 1) for which the smallest two weights are
equal, wα(x|X |) = wα(x|X |−1); α2 is the smallest value of
α ∈ [0, 1) for which the next smallest two weights are equal,
wα(x|X |−1) = wα(x|X |−2) and so forth, and α|X |−1 is the
smallest value of α ∈ [0, 1) for which the two largest weights
are equal, wα(x2) = wα(x1). For a given value of α ∈ [0, 1),

define the minimum over x ∈ X of the weights by w∗α
�=

minx∈X wα(x).
Since for k = 0, wα0(x) = w0(x) = p(x),∀x ∈ X , is the

set of initial symbol probabilities, let U0 denote the singleton
set {x|X |}. Specifically,

U0
�=

{
x ∈ {x|X |} : p∗ �= min

x∈X
p(x) = p(x|X |)

}
. (10)

Similarly, U1 is defined as the set of symbols in {x|X |−1, x|X |}
whose weight evaluated at α1 is equal to the minimum
weight w∗α1

:

U1
�=

{
x ∈ {x|X |−1, x|X |} : wα1(x) = w∗α1

}
. (11)

In general, for a given value of αk, k ∈ {1, . . . , |X |−1}, define

Uk
�=

{
x ∈ {x|X |−k, . . . , x|X |} : wαk (x) = w∗αk

}
. (12)

Lemma 3: Consider pay-off Lα(l, p) and real-valued prefix
codes. For k ∈ {0, 1, 2, . . . , |X | − 1} then

wα(x|X |−k)=wα(x|X |)=w∗α, α ∈ [αk, αk+1)⊂[0, 1). (13)

Further, the cardinality of set Uk is |Uk | = k + 1, k ∈
{0, 1, 2, . . . , |X | − 1}.

Proof: The derivation is based on perfect induction and
is outlined (for missing steps see [28]) as follows. First, it is
shown that for α ≤ α1, the smallest weight wα(x|X |) increases

with α, while the rest decrease. Then, for α1 ≤ α < α2,
it is shown that the two smallest weights, wα(x|X |) and
wα(x|X |−1), are equal as α changes and increase at the same
rate with α. It is assumed that this property holds for k, i.e.,
that for αk ≤ α < αk+1, the k + 1 smallest weights are equal,
i.e., wα(x|X |) = wα(x|X |−1) = . . . = wα(x|X |−k), and these
weights belong into set Uk (thus, its cardinality is k + 1) and
it is proven that the same property holds for k + 1.

Based on the results of Lemmas 2 and 3, the next theorem
describes how the weight vector wα changes as a function of
α ∈ [0, 1) so that the solution of the coding problem can be
characterized.

Theorem 1: Consider pay-off Lα(l, p) and real-valued pre-
fix codes.
For α ∈ [αk, αk+1), k ∈ {0, 1, . . . , |X | − 1}, the optimal
weights

w†
α
�= {w†

α(x) : x ∈ X } ≡ (
w†

α(x1),w
†
α(x2), . . . , w

†
α(x|X |)

)
,

are given by

w†
α(x) =

⎧
⎨

⎩

(1− α)p(x), x ∈ Uc
k

w∗αk
+ (α − αk)

∑
x∈U c

k
p(x)

|Uk | , x ∈ Uk ,
(14)

where Uk is given by (12) and

αk+1 = αk + (1− αk)
(p(x|X |−(k+1))− p(x|X |−k)
∑

x∈Uc
k

p(x)

|Uk | + p(x|X |−(k+1))

. (15)

Moreover, the minimum α, called αmax, such that for α ∈
[αmax, 1] there is no compression, is given by

αmax = 1− 1

|X |p(x1)
. (16)

Proof: By Lemma 3, for α ∈ [αk, αk+1), the lowest
probabilities become equal and change together forming a total
weight given by
∑

x∈Uk

wα(x) = |Uk |w∗α
= α + (1− α)p(x|X |)+ · · · + (1− α)p(x|X |−k).

Hence,

|Uk |∂w∗α
∂α
= 1−

∑

x∈Uk

p(x),

∂w∗α
∂α
= 1−∑

x∈Uk
p(x)

|Uk | =
∑

x∈U c
k

p(x)

|Uk | .

By letting, δk(α)
�= α − αk , then

w∗α = w∗αk
+ δk(α)

∑
x∈U c

k
p(x)

|Uk | , x ∈ Uk, (17)

and wα(x) = (1 − α)p(x), x ∈ Uc
k . When δk(α)|α=αk+1 =

αk+1 − αk , then wαk+1(x|X |−(k+1)) = w∗αk+1
, and

(1− αk+1) p(x|X |−(k+1)) = w∗αk
+ δk(αk+1)

∑
x∈Uc

k
p(x)

|Uk | .

After some manipulations, αk+1 is given by

αk+1 = αk + (1− αk)
p(x|X |−(k+1))− p(x|X |−k)
∑

x∈Uc
k

p(x)

|Uk | + p(x|X |−(k+1))

. (18)
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Fig. 1. A schematic representation of the weights for different values of α.

When there exist no compression all the weights are equal.
Hence,

w∗αmax
=

∑
x∈X wαmax(x)

|X | = 1

|X | . (19)

The minimum α beyond which there is no compression is
the α at which all the weights become equal for the first time.
This is the case when (1−αmax)p(x1) = w∗αmax

or equivalently
αmax = 1− 1

|X |p(x1)
.

Theorem 1 facilitates the computation of the optimal real-
valued prefix codeword lengths vector l† minimizing pay-off
Lα(l, p) as a function of α ∈ [0, 1) and the initial source
probability vector p, via re-normalization and merging. Specif-
ically, the optimal weights are found recursively calculating
αk, k ∈ {0, 1, . . . , |X | − 1}. For any specific α̂ ∈ [0, 1) an
algorithm is given next, which describes how to obtain the
optimal real-valued prefix codeword lengths minimizing pay-
off Lα̂(l, p).

Remark 2: As aforementioned, alternatively, the problem
can be solved numerically via a waterfilling-like approach.
In this case, for a specific α̂ ∈ [0, 1) the minimum weight
w� (corresponding to the maximum codeword length) can be
found by solving the following equation (see Appendix B for
the derivation):

∑

x∈X

(
w� − (1− α̂)p(x)

)+ = α̂, (20)

where ( f )+ = max(0, f ). Then, w� is compared with
(1 − α̂)p(x), ∀x ∈ X ; if (1 − α̂)p(x) > w�, then l† =
− log

(
(1− α̂)p(x)

)
. Otherwise, l† = − log

(
w�

)
.

A. An Algorithm for Computing the Optimal Weights

For any probability distribution p ∈ P(X ) and α ∈ [0, 1)
an algorithm is presented to compute the optimal weight
vector wα of Theorem 1. By Theorem 1 (see also Fig. 1 for
a schematic representation of the weights for different values
of α), the weight vector wα changes piecewise linearly as a
function of α ∈ [0, 1). The value of αmax is also indicated.

The value of α̂ ∈ [0, 1) can be provided by the problem
specifications: α̂ weights the maximum codeword length,
while (1 − α̂) weights the average codeword length. As this

Algorithm 1 Algorithm for Computing the Weight Vector wα

for Problem 1

initialize
p = (

p(x1), p(x2), . . . , p(x|X |)
)
, α = α̂

k = 0, α0 = 0, αmax = 1− 1/(|X |p(x1))
if α̂ ≥ αmax then

return w†
α̂
= 1/|X |, ∀x ∈ X

end if
while αk < α̂ < αmax do

Calculate αk+1:

αk+1 = αk + (1− αk)
p(x|X |−(k+1))− p(x|X |−k)
∑

x∈Uc
k

p(x)

k+1 + p(x|X |−(k+1))
k ← k + 1

end while
k ← k − 1
Calculate w†

α̂
:

for v = 1 to |X | − (k + 1) do
w†

α̂
(xv ) = (1− α̂)p(xv )

v ← v + 1
end for
Calculate w∗

α̂
:

w∗(α̂) = (1− ak) p(x|X |−k)+ (α̂ − αk)

∑
x∈U c

k
p(x)

k + 1
for v = |X | − k to |X | do

w†(xv ) = w∗α̂
v ← v + 1

end for
return w†

α̂

parameter moves away from α̂ = 0, more weight is put on
reducing the maximum codeword length, thus the maximum
length of the code is reduced resulting in a more balanced
code tree. For example, we will see later that for limiting the
maximum codeword length L lim, the value of α̂ has to be
greater than a specific value that is computed based on L lim.

Given a specific value of α̂ ∈ [0, 1), in order to calculate the
weights wα̂(x), it is sufficient to determine the values of α at
the intersections by using (15), up to the value of α for which
the intersection gives a value greater than α̂, or up to the last
intersection (if all the intersections give a smaller value of α)
at αmax beyond which there is no compression. For example,
if α1 < α̂ < α2, find all α’s at the intersections up to and
including α2 and subsequently, the weights at α̂ can be found
by using (14). Specifically, check first if α̂ ≥ αmax. If yes,
then the weights are equal to 1/|X |. If α̂ < αmax, then find
α1, . . . , αm , m ∈ N, m ≥ 1, until αm−1 < α̂ ≤ αm . As soon
as the α’s at the intersections are found, the weights at α̂ can
be found by using (14). The algorithm is easy to implement
and extremely fast due to its low computational complexity.
The worst case scenario appears when α|X |−2 < α̂ < αmax =
α|X |−1, in which all α’s at the intersections are required to
be found. Note that, if α is closer to αmax, then it is easier to
find αmax first and then to implement the algorithm backwards.
In general, the worst case complexity of the algorithm is O(n).
The complete algorithm is depicted under Algorithm 1.
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Fig. 2. A schematic representation of the weights for different values of α
when p = ( 8

15 , 4
15 , 2

15 , 1
15 ).

In what follows, we present an illustrative running example
of the optimal codes derived in this paper, with emphasis on
the merging rule which partitions the source alphabet X into
U and Uc as a function of α ∈ [0, 1).
Consider binary codewords and a source with |X | = 4 and
probability distribution

p =
(

8

15

4

15

2

15

1

15

)
.

Using Algorithm 1, one can find the optimal weight vector
w†

α for different values of α ∈ [0, 1) for which pay-off (1)
of Problem 1 is minimized. Computing α1 via (15) gives
α1 = 1/16. For α = α1 = 1/16 the optimal weights are

w†
3(α) = w†

4(α) = (1− α)p3 = 1

8

w†
2(α) = (1− α)p2 = 1

4

w†
1(α) = (1− α)p1 = 1

2

In this case, the resulting codeword lengths correspond to the
optimal Huffman code. The weights for all α ∈ [0, 1) can be
calculated iteratively by calculating αk for all k ∈ {0, 1, 2, 3}
and noting that the weights vary linearly with α (Figure 2).

III. OPTIMAL CODEWORD LENGTHS

This section presents the complete characterization of the
optimal real-valued codeword length vectors l ∈ L

(
R
|X |
+

)

of the pay-offs stated under Problem 1. Further, a coding
theorem is derived and relations to limited length coding
and coding with general pay-off criteria are described. The
related problems are stated under Problem 3. Finally, the
application of the new codes in the context of universal coding
applications in which the source probability vector belongs to
a specific class is discussed.

Fig. 3. A schematic representation of the codeword lengths for different
values of α when p = ( 8

15 , 4
15 , 2

15 , 1
15 ).

In view of Lemma 1 (and the discussion following it)
and Theorem 1 the main theorem which gives the optimal
codeword length vector is presented.

Theorem 2: Consider Problem 1 for any α ∈ [0, 1). The
optimal prefix code l† ∈ R

|X |
+ minimizing pay-off Lα(l, p) is

given by

l†
α(x)=

⎧
⎨

⎩

− log
(
(1− α)p(x)

)
=wα(x), x ∈ Uc

k

− log
(

α+(1−α)
∑

x∈Uk
p(x)

|Uk |
)
= wα(x), x ∈ Uk . (21)

Here α ∈ [αk, αk+1) ⊂ [0, 1), k ∈ {1, . . . , |X | − 1}, and
αk, αk+1 are found from Theorem 1.

Proof: (21) follows from Lemma 1 while the specific
α ∈ [αk, αk+1) follow from Theorem 1.
Note that for α = 0 Theorem 2 corresponds to the Shan-
non solution lsh(x) = − log p(x), while for α ∈ [αmax, 1)
the weight vector wα is identically distributed, and hence
l†
α(x) = 1

|X | . The behavior of wα(x) and l†
α(x) as a func-

tion of α ∈ [0, 1) is described in the next Section via
illustrative examples. Clearly, by rounding off the optimal

codeword lengths via l‡(x)
�= �− log

(
w†

α(x)
)
 then H(wα) ≤∑

x∈X l‡(x)wα(x) < H(wα) + 1. Note that one may fix the
minimum or maximum lengths in (21) and find the value of
α ∈ [0, 1) which gives these specific lengths. This observation
will be discussed in detail in Section III-B.

Going back to the running example, for given weights,
we transformed the problem into a standard average length
coding problem, in which the optimal codeword lengths
can be easily calculated for all α’s and they are equal to
�− log(wα(x))
,∀x ∈ X . The schematic representation of the
codeword lengths for α ∈ [0, 1) is shown in Figure 3.
The following proposition shows that the optimal pay-off is
non-decreasing and concave function of α.

Proposition 1: The optimal pay-off Lα(l†, p) is
non-decreasing concave function of α ∈ (0, 1).
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Fig. 4. A schematic representation of the multiobjective function for different
values of α when p = ( 8

15 , 4
15 , 2

15 , 1
15 ).

Proof: It follows by verifying that the derivative is non-
negative.

For the running example, in Figure 4 it is verified that the
optimal pay-off function is non-decreasing concave function
of α ∈ [0, 1) and at α3 = αmax = 0.53125 the cost function
remains unchanged.

A. Coding Theorem

This section proves a coding theorem by considering sources

which generate symbols independently. Let X n �= ×n
i=1X

denote the nth extension of the source which generates sym-
bols in X n independently according to p ∈ S(X ) (e.g., the
extension source is memoryless). A typical realization of the
nth extension source xn ∈ X n is an n-tuple of the form xn =
(xi1 , xi2 , . . . , xin ), xi j ∈ X , 1 ≤ j ≤ n. Since the symbols are
independently generated then p(xn) = p(xi1)p(xi2) . . . p(xin ).
Let l(xn) denote the length of some uniquely decodable code
for a given realization xn ∈ X n . Then, the maximum and
average length pay-off for such n−tuple sequences xn is
defined by

L
n
α(l, p)

�= α max
xn∈X n

l(xn)+ (1− α)
∑

xn∈X n

l(xn)p(xn)

=
(
α + (1− α)

∑

xn∈Un

p(xn)
)

l∗

+
∑

xn∈Un,c

(1− α)p(xn)l(xn)

=
∑

xn∈X n

wα(xn)l(xn),

where α ∈ [0, 1), l∗ �= maxxn∈X n l(xn),Un �=
{

xn ∈ X n :
l(xn) = l∗

}
,X n = Un ∪ Un,c, and

∑
xn∈Un wα(xn) =

α + (1 − α)
∑

xn∈Un p(xn), wα(xn) = (1 − α)p(xn),
xn ∈ Un,c. Let l(xn) be the integer length vector which

satisfies − log wα(xn) ≤ l(xn) < − log wα(xn)+ 1 where

wα(xn) =
{

(1− α)p(xn), xn ∈ Un,c

α+(1−α)
∑

xn∈Un p(xn)
|Un | , xn ∈ Un.

(22)

Then the maximum and average length pay-off per source
symbol 1

n L
n
α(l, p) satisfies

1

n
H(wα(xn)) ≤ 1

n
L

n
α(l, p) <

1

n
H(wα(xn))+ 1

n
. (23)

Hence, by choosing n sufficiently large, then 1
n L

n
α(l, p) can

be made arbitrarily close to the lower bound 1
n H(wα(xn)).

Define the entropy rate of wα(xn) by

H(wα)
�= lim

n→∞
1

n
H(wα(xn)). (24)

Then, the following coding theorem is obtained.
Theorem 3: Consider a discrete source with alphabet X

generating symbols independently according to p ∈ S(X ).
Then, by encoding uniquely decodable sufficiently long
sequences of n source symbols it is possible to make the max-
imum and average length pay-off per source symbol 1

n L
n
α(l, p)

arbitrarily close the entropy rate H(wα). Moreover, it is not
possible to find a uniquely decodable code whose maximum
and average length pay-off per source symbol 1

n L
n
α(l, p) is less

than the entropy rate H(wα).
Proof: The first part of the theorem follows by the above

discussion. The second part of the theorem follows from the
discussion below Lemma 1.

B. Limited-Length Shannon Coding

Note that from the characterization of optimal codes for
Problem 1, one can also obtain as a special case the charac-
terization of optimal codes minimizing the average codeword
length subject to a hard constraint on the maximum codeword
length, as defined below.

Problem 2: Given a known source probability vector p ∈
P(X ) and a hard constraint L lim ∈ [1,∞), find a prefix
codeword length vector l∗ ∈ R

|X |
+ which minimizes the Average

Length Subject to Maximum Length Constraint pay-off L(l, p)
defined by

L(l, p)
�=

∑

x∈X
l(x)p(x), (25a)

subject to max
x∈X

l(x) ≤ L lim. (25b)

Limited length coding problems are of interest in various
applications, such as distributed systems that are delay-
sensitive and require short codewords or/and fast coders with
short code table size.
It is important to note that the solution of Problem 2 does
not in general give the solution of Problem 1. For inter-valued
prefix codes l∗ ∈ Z

|X |
+ , the solution of Problem 2 is addressed

in [26] via a dynamic programming approach. This led to
the so-called length-limited Huffman algorithm investigated
extensively in the literature (for more details, see [26] and
references therein).
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Here it is noticed that by introducing a real-valued Lagrange
multiplier μ associated with the constraint on the maximum
length the unconstrained pay-off is defined by

L(l, p, μ)
�=

∑

x∈X
l(x)p(x)+ μ(max

x∈X
l(x)− L lim), μ > 0

= μ max
x∈X

l(x)+
∑

x∈X
l(x)p(x)− μL lim. (26)

Hence, the optimal code from Problem 2 is obtained from
the optimal code solution of Problem 1, by substituting
μ = α/(1 − α), and then relating the value of the Lagrange
multiplier with a specific value of α for which the codeword
lengths will be limited by L lim. The complete characterization
of the optimal codes and the associated coding algorithm are
given next.

Theorem 4: Consider Problem 2 for any α ∈ [0, 1). The
optimal prefix code l† ∈ R

|X |
+ minimizing the pay-off L(l, p)

is given by

l†
α(x) =

⎧
⎨

⎩

− log
(
(1− α)p(x)

)
, x ∈ Uc

k

− log
(

α+(1−α)
∑

x∈Uk
p(x)

|Uk |
)
, x ∈ Uk

where

α =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if − log(p|X |) ≤ L lim,

1− 1− |Uk|D−L lim

∑
x∈U c

k
p(x)

, if − log
(∑

x∈X p(x)
|X |

)
< L lim,

and L lim ≤ − log(p(x|X |)),

αmax, if L lim = − log
(∑

x∈X p(x)
|X |

)
.

If L lim < − log
(∑

x∈X p(x)
|X |

)
, there is no feasible solution to

Problem 2.
Proof: Follows from Karush-Kuhn-Tucker theorem (for

completeness see [28]).
A similar algorithm to Algorithm 1 can be implemented

for the limited length case. However, there exist some basic
differences. Algorithm 1 has a certain value of α for which
it tries to identify the cardinality of U and hence, specify
the weight vector wα . On the other hand, the new algorithm
uses the maximum length to find if there exist a feasible
α for which the limited-length constraint is fulfilled. Then,
if feasibility is guaranteed, the cardinality is specified by
comparing the optimum lengths at the merging points with the
specified maximum length. Therefore, given the cardinality,
the corresponding α is specified and finally, in the same way
as in algorithm 1, the weight vector wα is specified.
Consider binary codewords and a source with |X | = 8 and
probability distribution

p =
(

1

26

1

26

2

26

2

26

2

26

4

26

5

26

9

26

)
.

We can find the value of α for which the codeword length is
less than or equal to L lim. Hence, the optimal weights w† and
codeword lengths l† for the given α can be found. Consider,
for example, the case L lim = 5; then it can be shown that
L lim > − log(1/26) and hence the solution to the problem is

Fig. 5. A schematic representation of the weights for different values of α
when p = ( 1

26 , 1
26 , 2

26 , 2
26 , 2

26 , 4
26 , 5

26 , 9
26 ).

Fig. 6. A schematic representation of the codeword lengths for different
values of α when p = ( 1

26 , 1
26 , 2

26 , 2
26 , 2

26 , 4
26 , 5

26 , 9
26 ).

the standard Shannon coding with α = 0. This can also be
inferred from Figure 5. Consider the case when the maximum
length is 4 (e.g., L lim = 4); then α̂ = 0.0521 and the optimal
lengths are l† = (

1.61 2.46 2.78 3.78 3.78 3.78 4 4
)
. The

average codeword length is 2.6355.
Consider the case L lim = 3; since |X | = 8, there is no
compression and all codeword lengths are equal to 3. In this
case, α̂ = 0.6389, is the minimum α for which there is no
compression. This can be seen in Figure 5 and 6.
For the case L lim < 3, there is no α for which the maximum
length will be equal L lim.

C. General Pay-Off and Limiting Problem

Problem 1 can be further modified by noticing that
1
t log

∑
x∈X p(x)Dtl(x) is a nondecreasing function of t ∈

[0,∞), and limt→∞ 1
t log

∑
x∈X p(x)Dtl(x) = maxx∈X l(x).

Hence, by replacing α maxx∈X l(x) in Lα(l, p), by the function
α
t log

(∑
x∈X p(x)Dtl(x)

)
, the resulting pay-off takes into

account moderate values below maxx∈X l(x), obtaining a
two-parameter pay-off. The pay-off resulting from this
observation is defined next, while the solution is discussed.

Problem 3: Given a known source probability vector p ∈
P(X ), weighting parameter α ∈ [0, 1), and parameter t ∈
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(−∞,∞), find a prefix codeword length vector l∗ ∈ R
|X |
+

which minimizes the two-parameter Average of Linear and
Exponential Functions of Length pay-off Lt,α(l, p) defined by

Lt,α(l, p)
�= α

t
log

( ∑

x∈X
p(x)Dtl(x)

)
+(1− α)

∑

x∈X
l(x)p(x),

(27)

for all α ∈ [0, 1) and t ∈ (−∞,∞).
Although, the solution of Problem 3 will be investigated for
t ∈ [0,∞), the problem is also well defined for t ∈ (−∞, 0).
The above pay-off is a convex combination of the average
of an exponential function of the codeword length, and the
average codeword length. However, moderate values of t ∈
[0,∞) are also of interest since the pay-off Lt,α(l, p) can be
interpreted as a trade-off between universal codes and average
length codes. Thus, for a fixed value of α ∈ [0, 1), and
since Lt,α(l, p) is non-decreasing with respect to parameter
t ∈ (0,∞), then t is another design parameter, which can
be selected so that the average codeword length is below
Lα(l, p).

The case α = 1 is investigated in [4]–[8], [10], where rela-
tions to minimizing buffer overflow probability are discussed.
Further, it is not difficult to verify that Lt,α(l, p)|α=1 is also
the dual problem of universal coding problems, formulated
as a minimax, in which the maximization is over a class
of probability distributions which satisfy a relative entropy
constraint with respect to a given fixed nominal probabil-
ity distribution [14], [27]. Hence, the pay-off Lt,α|(l, p)α=1
encompasses a trade-off between universal codes and
buffer overflow probability and average codeword length
codes.

Similarly as in Problem 1, a slight modification of the
two-parameter pay-off to the convex combination of the aver-
age of an exponential function of the pointwise redundancy
and the average pointwise redundancy, Lt,α(l+ log p, p), is of
interest for integer-valued codes, since the real-valued codes
minimizing this pay-off are l∗(x) = − log p(x), x ∈ X .
To the best of our knowledge only the special cases of
α = 0, α = 1 are investigated for pay-off Lt,α(l + log p, p)
(see [3], [4], [7], [8]).

Theorem 5: Consider Problem 3 for any α ∈ [0, 1),
t ∈ [0,∞). The optimal prefix code l† ∈ R

|X |
+ minimizing

the pay-off Lt,α(l, p) is given by

l†
t,α(x) = − log

(
ανt,α(x)+ (1− α)p(x)

)
, x ∈ X , (28)

where {νt,α(x) : x ∈ X } is defined via the tilted probability
distribution

νt,α(x)
�= Dt l†

t,α(x) p(x)
∑

x∈X p(x)Dt l†
t,α(x)

, x ∈ X . (29)

Proof: The derivation is based on the Karush-Kuhn-
Tucker theorem (see [28] for details).
Note that the solution stated under Theorem 5 corresponds,
for α = 0 to the Shannon code, which minimizes the average
codeword length pay-off, while for α = 1 (after manipulations)

it is given by

l†
t,α=1(x) = − 1

1+ t
log p(x)+ log

( ∑

x∈X
p(x)

1
1+t

)
, x ∈ X .

(30)

Thus, (30) is precisely the solution of a variant of the Shannon
code, minimizing the average of an exponential function
of the codeword length pay-off [6], [7]. It can be shown
that

H 1
1+t

(p) ≤
∑

x∈X
p(x)l†

t,α=1(x) < H 1
1+t

(p)+ 1 (31)

where Ha(p) is the Rényi entropy given by

Ha(p)
�= 1

1− a
log

( ∑

x∈X
p(x)a

)
, a

�= 1

1+ t
, t �= 0.

(32)

However, for any α ∈ (0, 1) the following system of equations
should be solved.

D−l†(x) = α
Dt l†(x) p(x)

∑
x∈X p(x)Dt l†(x)

+ (1− α)p(x), ∀x ∈ X .

(33)

Although, the solution of Problem 1 is different from the
solution of Problem 3, in the limit, as t → ∞, the solutions
should coincide, provided the merging rule on how the solution
changes with α ∈ [0, 1) is employed. To this end, consider the
following identities.

lim
t→∞

1

t
log

( ∑

x∈X
p(x)Dtl(x)

)
= max

x∈X
l(x),

L∞,α(l, p)
�= lim

t→∞Lt,α(l, p) = Lα(l, p). (34)

Since the pay-off Lt,α(l, p) is in the limit, as t → ∞,
equivalent to limt→∞ Lt,α(l, p) = Lα(l, p), ∀α ∈ [0, 1),
then the codeword length vector minimizing Lt,α(l, p) is
expected to converge in the limit as t → ∞, to that which
minimizes Lα(l, p). To verify this claim consider the behavior
of the optimal two parameter pay-off Lα(l†t,α, p), for a fixed
α ∈ [0, 1) as t increases, given in Theorem 5, which is
equivalent to

D−l†
t,α (x) = α

Dt l†
t,α(x) p(x)

∑
x∈X p(x)Dt l†

t,α (x)
+(1−α)p(x), ∀x ∈ X .

(35)

Write
∑

x∈X
p(x)Dt l†

t,α(x) =
∑

x∈U c

p(x)Dt l†
t,α(x) +

∑

x∈U
p(x)Dt l†

t,α(x).

Utilizing the validity of the limits under (34), in the limit as,
t →∞, (35) becomes

D−l†
α(x) = (1− α)p(x), x ∈ Uc

k (36)

D−l†
α(x) = α

p(x)
∑

x∈Uk
p(x)
+ (1− α)p(x), x ∈ Uk . (37)
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Since p(x) = p(y),∀x, y ∈ Uk , then (36) and (37)
are the same as (14). These calculations verify that
limt→∞ Lt,α(l, p) = Lα(l, p), ∀l, and at l = l†. The point to
be made here is that the solution of Problem 1 can be deduced
from the solution of Problem 3, in the limit as t → ∞,
provided the merging rule on how the solution changes with
α ∈ [0, 1) is employed.

D. Generalizations: Connections to Universal Coding

Although, the current paper does not investigate universal
coding problems, this exposition is included for the purpose
of demonstrating that the optimal codes characterized under
Problem 1, can be used to address problems of universal
coding, having pay-off Lt,α(l, p) or Lα(l + log p, p), and
probability vector p belonging to a class of source probabil-
ity vectors.

Recall that universal coding and universal modeling [29],
and the so-called Minimum Description Length (MDL) prin-
ciple and Stochastic Complexity [30] are often examined when
the source probability distribution p is unknown, modeled via

a parameterized class pθ
�=

{
pθ (x) : x ∈ X , θ ∈ 
 ⊂ �d

}

(θ is a parameter vector), or a non-parameterized class S(X ) ⊂
P(X ). Universal coding initiated in [11] and [12], and further
investigated in [31] and [32] aims at constructing a code for
sequences of symbols generated by unknown sources, pθ or
S(X ), such that as the length of the sequence increases, the
average codeword length converges to the entropy of the true
source that generated the sequence.

When the source probability vector is not a singleton set,
but a family or a class of probability vectors, then Problem 1
can be re-formulated to account for this generality as follows.

Problem 4: Given a family of source probability vectors
p ∈ S(X ) ⊂ P(X ) and weighting parameter α ∈ [0, 1), define
the one parameter pay-offs as follows.
A. Worst Case Maximum and Average Length.

L
+
α (l, p)

�= max
p∈S(X )

{
α max

x∈X
l(x)+ (1− α)

∑

x∈X
l(x)p(x)

}
. (38)

B. Worst Case Maximum and Average Redundancy.

L
+
α (l+ log p, p)

�= max
p∈S(X )

{
α max

x∈X

(
l(x)+ log p(x)

)

+(1− α)
( ∑

x∈X
l(x)p(x)−H(p)

)}
. (39)

The objectives are the following.

• Find a prefix codeword length vector l∗ ∈ R
|X |
+ which

minimizes the pay-off L
+
α (l, p),

• Find a prefix codeword length vector l∗ ∈ R
|X |
+ which

minimizes the pay-off LR
+
α (l + log p, p),

for all α ∈ [0, 1).
The universal coding problems defined above are based on
minimax techniques, the minimization being over the code-
word lengths satisfying Kraft inequality, the maximization
being over the class of probability vectors S(X ). Next it will
be shown how the complete characterization of the optimal
codes for Problem 1 can be used to obtain a complete

characterization for the above minimax problem, by using von
Neumann’s minimax (or minisup) theorem. Consider the case
when S(X ) is compact (closed and bounded since it is a subset
of a finite dimensional space) and convex. Then, since the set
defining the Kraft inequality in compact and convex, the pay-
off α maxx∈X l(x) + (1 − α)

∑
x∈X l(x)p(x) is convex and

continuous in l ∈ R
|X |
+ for a fixed p ∈ S(X ), and convex

and continuous in p ∈ S(X ) for a fixed l ∈ R
|X |
+ . By von

Neumann’s minimax theorem, the minimum over l∗ ∈ R
|X |
+

is interchanged with the maximum over p ∈ S(X ). Therefore,
the solution of Problem 4 is characterized by maximizing over
p ∈ S(X ), the solution of Problem 1. On the other hand, if the
compactness of the set S(X ) is removed, then the maximiza-
tion is replaced by supremum and von Neumann’s minsup
theorem applies, hence one can interchange the minimum
with the supremum utilizing again the solution of Problem 1.
Hence, the solution to the coding Problem 4 is within our
reach and it is based on the solution to Problem 1.

One may also investigate to what extend von Neumann’s
minimax theorem holds for the redundancy pay-off (39); for
α = 1, L

+
α (l+ log p, p)|α=1, is investigated in [3] and [13].

IV. CONCLUSION AND FUTURE DIRECTIONS

The solution to a lossless coding problem with a pay-off
criterion consisting of a convex combination of average and
maximum codeword length is presented. The solution consists
of a re-normalization of the initial source probabilities
according to a merging rule. Several properties of the
solution are introduced and an algorithm is presented which
computes the codeword lengths. The formulation and solution
of this problem bridges together an anthology of source
coding problems with different pay-offs; relations to problems
discussed in the literature are obtained, such as, limited-length
coding and coding with exponential function of the codeword
length. Illustrative examples corroborating the performance
of the codes have been presented.

The identification of a Huffman-like algorithm which solves
the problem using integer-valued codeword lengths is left for
future investigation.
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APPENDIX A

PROOF OF LEMMA 1

By introducing a real-valued Lagrange multiplier λ, by the
Karush-Kuhn-Tucker theorem, the necessary and sufficient
conditions for optimality are found. Differentiating with
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respect to l, when x ∈ U and x ∈ Uc the following equations
are obtained.

∂

∂l(x)
Lα(l, p, λ)|l=l†,λ=λ†

= (1− α)p(x)− λ† D−l†(x) loge D

= 0, x ∈ Uc (40)
∂

∂l(x)
Lα(l, p, λ)|l=l†,λ=λ†

= α
∑

x∈U c

p(x)+
∑

x∈U
p(x)− λ†|U |D−l†(x) loge D

= 0, x ∈ U . (41)

When λ† = 0, (40) gives (1− α)p(x) = 0,∀x ∈ Uc. Since
p(x) > 0 then necessarily α = 1. This is the case when there is
no compression, since U = X . For α ∈ [0, 1) then necessarily
λ† > 0. Therefore, by restricting α ∈ [0, 1) then (40), (41) are
equivalent to the following identities.

D−l†(x) = (1− α)p(x)

λ† loge D
, x ∈ Uc, (42)

D−l†(x) = α
∑

x∈U c p(x)+∑
x∈U p(x)

λ†|U | loge D
, x ∈ U . (43)

Next, λ† is found by substituting (42) and (43) into the Kraft
equality to deduce

∑

x∈X
D−l†(x) =

∑

x∈U c

D−l†(x) +
∑

x∈U
D−l†(x)

=
∑

x∈U c

(1− α)p(x)

λ† loge D

+
∑

x∈U

α
∑

x∈U c p(x)+∑
x∈U p(x)

λ†|U | loge D

= 1

λ† loge D
= 1.

Therefore, λ† = 1
loge D . Substituting λ† into (42) and (43)

yields (7).

APPENDIX B

WATERFILLING-LIKE SOLUTION OF PROBLEM 1

The pay-off L
M O
α (l, p) is a convex combination of the max-

imum and the average codeword length. The problem can be
expressed as

min
t

min
l

{
αt + (1− α)

∑

x∈X
l(x)p(x)

}
, (44)

subject to the Kraft inequality and the constraint l(x) ≤ t
∀x ∈ X .

By introducing real-valued Lagrange multipliers λ(x) asso-
ciated with the constraint l(x) ≤ t ∀x ∈ X and a real-valued
Lagrange multiplier ν associate with the Kraft inequality, the
augmented pay-off is defined by

Lα(l, p, λ, ν)
�= αt + (1− α)

∑

x∈X
l(x)p(x)

+ ν

(
∑

x∈X
D−l(x) − 1

)

+
∑

x∈X
λ(x)(l(x)− t).

The augmented pay-off is a convex and differentiable function
with respect to l and t . Denote the real-valued minimization
over l, t, λ, ν by l†, t†, λ† and ν†. By the Karush-Kuhn-Tucker
theorem, the following conditions are necessary and sufficient
for optimality.

∂

∂l(x)
Lα(l, p, t, λ, ν)|l=l†,λ=λ†,t=t†,ν=ν† = 0, (45)

∂

∂ t
Lα(l, p, t, λ, ν)|l=l†,λ=λ†,t=t†,ν=ν† = 0, (46)

∑

x∈X
D−l†(x) − 1 ≤ 0, (47)

ν† ·
(

∑

x∈X
D−l†(x) − 1

)

= 0, (48)

ν† ≥ 0, (49)

l†(x)− t† ≤ 0, ∀x ∈ X , (50)

λ†(x) ·
(

l†(x)− t†
)
= 0, v∀x ∈ X , (51)

λ†(x) ≥ 0, ∀x ∈ X . (52)

Differentiating with respect to l, the following equation is
obtained:

∂

∂l(x)
Lα(l, p, λ, ν)|l=l†,λ=λ†,t=t†,ν=ν†

= (1− α)p(x)− ν† D−l†(x) loge D + λ†(x)

= 0, ∀x ∈ X . (53)

Then, differentiating with respect to t , the following equa-
tion is obtained:

∂

∂ t
Lα(l, p, λ, ν)|l=l†,λ=λ†,t=t†,ν=ν† = α −

∑

x∈X
λ†(x) = 0.

(54)

When ν† = 0, (53) gives (1 − α)p(x)+ λ†(x) = 0,∀x ∈ X .
Since p(x) > 0 and λ†(x) ≥ 0 then necessarily α = 1. This
is the case when there is no compression. For α ∈ [0, 1) then
necessarily ν† > 0.
By restricting α ∈ [0, 1) then (53) and (54) are equivalent to
the following identities:

D−l†(x) = (1− α)p(x)+ λ†(x)

ν† loge D
, x ∈ X , (55)

∑

x∈X
λ†(x) = α. (56)

Next, ν† is found by substituting (55) and (56) into the Kraft
equality to deduce ν† = 1

loge D . Substituting ν† into (55) yields

D−l†(x) = (1 − α)p(x) + λ†(x), x ∈ X . Substituting λ†(x)
into (56) we have

∑

x∈X

(
D−l†(x) − (1− α)p(x)

) = α. (57)

Let w†(x) � D−l†(x), i.e., the probabilities that correspond to
the codeword lengths l†(x); also, let w� � D−t†

. Then, (57)
can be written as

∑

x∈X

(
w†(x)− (1− α)p(x)

) = α. (58)
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Fig. 7. Example of the waterfilling solution of the coding problem.
In this case the weight vector is given by w† = {(1 − α)p1, (1 − α)p2,
(1− α)p3, w�,w�,w�,w�}.

From the Karush-Kuhn-Tucker conditions we deduce that for
the codeword lengths for which l†(x) < t† give λ†(x) = 0
and therefore, equation (58) becomes

∑

x∈X

(
w� − (1− α)p(x)

)+ = α, (59)

where ( f )+ = max(0, f ). This is the classical waterfilling
equation [2, Sec. 9.4] and w� is the water-level chosen,
as shown in Figure 7. For the solution of Problem 2, for
which we consider the limited-length case, w� = D−L lim and
equation (59) needs to be solved for α.
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