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ABSTRACT

In order to alleviate interference and contention in a wselnetwork, we may exploit the existence of multiple ortimag
channels or time slots, thus achieving a substantial inggm@nt in performance. In this paper we study a joint transioris
scheduling and power control problem that arises in wiselestworks. The goal is to assign channels (or time slots)
and transmitting powers to communication links such thiat@nmunication requests are processed correctly, specifie
Quality-of-Service (QoS) requirements are met, and thelraurof required time slots is minimised. First, we formulate
the problem as a mixed-integer linear programming (MILRjef, we show that the problem considered is NP-hard and
subsequently, we propose non-trivial bounding technigoaslve it. Optimisation methods are also discussed, datu

a column generation approach, specifically designed to finohdls for the transmission scheduling problem. Moreover,
we develop optimisation techniques in which the boundicbné&ues are integrated in order to derive the optimal Emiut

to the problem faster. We close with an extensive computatistudy, which shows that despite the complexity of the
problem, the proposed methodology scales to problems dfiuiah size. Our algorithms can therefore be used for stati
wireless networks where propagation conditions are alroosstant and a centralised agent is available (e.g. cellula
networks where the base station can act as a centralised agesreless mesh networks), and they can also serve as
a benchmark for the performance evaluation of heuristipr@pmation or distributed algorithms that aim to find near-
optimal solutions without information about the whole netlw Copyright(© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION the same problem. It is important to schedule channel/time

slot access in such a way so that spatial reuse is fully
Wireless technology standards provide a radio-frequencyexploited and hence the number of channels required to
(RF) spectrum with a set of many non-overlapping successfully complete all requests is minimised.
channels, and a node has the option to choose on which Power control has been a prominent research area with
channel to transmit. Likewise, in cases where only aincreased interest (e.g2{9]). Increased power ensures
single channel is available, it is possible to divide time longer transmission distance and higher data transfer rate
into frames, and then frames can be divided into timeHowever, power minimisation not only increases battery
slots, such that at each frame a node has the option ttifetime, but also the effective interference mitigation
choose on which time slot to transmit. In the latter case,that increases the overall network capacity by allowing
synchronisation of the wireless nodes in the network ishigher frequency reuse. Power control has been extensively
necessary. If synchronisation is not considered, howeveremployed for MAC in multi-hop wireless networks (for
choosing a channel or a time slot in the network becomesxample in L0-15]). Some of them aim to minimise

power dissipation. For exampleld] proposes a two-

phase method for the joint scheduling and power control
tPreliminary results of this work have been published as a TechnicarRege. ~ Which aims to find an admissible set of links along

*This research was sponsored in part by the Swedish Foundation forgitrate with their transmission power levels in a single channel
Research, SSF, under the RAMCOORAN project.
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only. [17] study the same problem as irlg], but it (geometric and abstract) physical model only. For the
focuses on minimising the scheduling length. Others, suctgeometric physical model, the NP-hardness of wireless
as [L8 and [L1], aim to maximize throughput at the scheduling without power control is proven i(. In
cost of increased power dissipation by allowing many [31] it is proven that strategies in the geometric physical
simultaneous interference-limited transmissions. Inhsuc model that use uniform power assignment schemes (same
schemes either time is divided into fixed-length slots power to all nodes in the network) or linear power
or there exist many channels and the wireless nodesssignment schemes (power levels proportional to the
have to choose on which one to transmit. The minimumminimum power required to reach the receiver node) have
latency scheduling problem (see for exampl9{1] a bad scheduling complexity. In addition, they propose a
and reference therein) and the computation of efficientpower-assignment algorithm that successfully schedules a
schedules for the abstract physical model with powernetwork using a poly-logarithmic number of time slots.
control (for example in 10, 11, 14-16, 22-24]) have  Approximation scheduling algorithms (see for example
been both extensively studied. However, many approachef32, 33]) are proposed that compute a feasible solution in
concentrate, for example, on throughput maximisation in apolynomial time for the geometric model with worst-case
single or multiple channels (e.g24, 26]) and scheduling  approximation guarantees for arbitrary network topolsgie
length minimisation (e.g.,27, 28] and reference therein), when the power levels are constant. BY[it is shown
rather than the minimisation of the number of channelsthat solutions with oblivious power assignments (the
or time-slots required. A wide range of applications for power level of a node depends only on the transmitter-
wireless networks are time-critical and impose stringentreceiver distance) cannot compete with solutions using
requirement on the communication latency. For example possibly different power levels and channels for a network.
a given rate demand is requested (that should be satisfieHowever, they are capable of achieving nearly the same
with minimum-length periodic scheduling actions) or performance as solutions restricted to symmetric power
a given volume of traffic must be delivered to the and channel assignments. For the geometric physical
destinations in minimum time. However, minimising model, the NP-hardness of wireless scheduling without
the scheduling length requires coordination between thgower control is proven in30] and with power control is
wireless nodes in order to orchestrate the order, duratiorproven in B5], given that we know minimum Byn > 0)
and initialisation of transmissions, something which and maximum Rmax < ) transmission power levels.
introduces extra communication overheads. On the other When considering the abstract physical model less
hand, minimum latency transmission scheduling does noinformation has to be considered and the values in the
require the communication between the nodes, but simplygain matrix are not restricted by the topology of the
synchronisation to a global clock in the network, so that network (not every gain matrix of the abstract model can
the nodes are able to know the beginning and the end obe expressed as a network, and on the contrary every
slots. gain matrix of the geometric model could be a case
When studying wireless networks, the choice of modelfor the abstract model), i.e., in the geometric physical
is crucial. Not only must the chosen model facilitate the model we have the advantage of exploiting the geometry
design of protocols, but it also has to truthfully reflect of the network in order to check complexity and to
the nature of the real network. Fading-channel modelsdesign scheduling algorithms. 18] the NP-hardness
depict real-world phenomena in wireless communications.of wireless scheduling without power for the abstract
These phenomena include multi-path fading, shadowingphysical model is proven and the problem is analytically
and attenuation with distance. While fading effects havesolved via a Column Generation approach. However,
been considered as detrimental in 2G wireless networksin order to achieve best performance, scheduling and
in 3G networks they are seen as an opportunity topower control should be optimised jointly. This problem
increase the capacity that incorporate data tra##}. [The is notoriously difficult to solve, even in a centralised
most common fading-channel model being used is themanner. In 87], this line of research is followed and
physical model, which is thoroughly described in Sectionthe transmission scheduling problem for minimising the
2. On a finer granularity, one distinguishes betweentotal number of slots (channel or time) for variable
the geometric and theabstract physical model. In the power levels is formulated. However, in this work they
geometric physical model the channel gain between twoconsidered non-problem specific analytic solutions that ar
nodes is solely determined by their spatial distance. Hencecomputationally expensive.
simplifying assumptions are incorporated into this model, We consider the abstract physical model and the
for example, the radios are perfectly isotropic and therecontributions of this paper can be summarised as follows.
are no obstructions3[]]. In the abstract physical model (i) We first prove that the minimum latency transmission
the channel gain between two nodes incorporates all thescheduling (MLTS) problem for the abstract model is
real-world phenomena and hence no information can beNP-hard for variable power levels. Contrary to existing
extracted about the geometry of the network. approaches and results in the literature, our formulation
The rest of the section concentrates on the relatedncludes the choice of optimal transmitting powers and
work that considers transmission scheduling under thearbitrary topology. Furthermore, the generality of the
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abstract physical model implies the complexity of the transmitter only at each time instant due to the half-duplex
geometric physical model and completes the theory thanature of the wireless transceiver. Each transmitter aims
the transmission scheduling problem with power controlto communicate with a single node (receiver) only, which
for the physical model in general is NP-hard. This answerscannot receive from more than one node simultaneously.
the open problem posted iB]. We denote by7 the set of transmitters and the set of
(i) We then propose non-trivial upper and lower bounding receivers in the network.
techniques that, for many cases, are able to find the optimal
solution without the need of other optimisation methods. 2.2. Channel Model
iii) For the networks where the optimality gap is not . Lo .
(if op y gap The link quality is measured by the Signal-to-Interference
closed, some approaches are discussed that solve the . . - .

. - . and-Noise-Ratio (SINR). The channel gain on the link
exact transmission scheduling problem with power control. S LT

. . . . between transmitteii and receiverj is denoted by
While classical techniques are being used from the . .
. . gij and incorporates the mean path-loss as a function
literature to solve the exact problem, they are tailor-made . . )
. ) . of distance, shadowing and fading, as well as cross-
to the problem and are also combined with our the effective . .
; . . dcorrelatlons between signature sequences. Albtjis are

bounding techniques that provide very good upper an

A ositive and can take values in the ran@el]. Without
lower bounds for the problem, thus achieving enhance . . .
! oss of generality, we assume that the intended receiver of
computational performance.

. . .__transmitteri is also indexed by. The power level chosen
The rest of the paper is organised as follows. In Sectio o .
) . y transmitteri is denoted byp;. v; denotes the variance
2 the employed system model is described. SecBion ) o S
o . of thermal noise at the receiverwhich is assumed to be
employs the conditions imposed by the model to formulate

e ! . additive Gaussian noise. The interference power atfhe
the transmission scheduling problem for variable power . . .
. . . node,l;, includes the interference from all the transmitters
levels as a Mixed Integer Linear Programming (MILP)

problem. Section4 derives some global conditions for in the network and the thermal noise, and is given by
feasibility of t_he netv\_/ork. Sectiorb shows that the I = z gjip; + Vi. 1)
problem considered is NP-hard, whereas Sect®n i4ies
firstly presents lower and upper bounding algorithms.
Further solution methodologies are discussed, including al'herefore, the SINR at the receivieis given by
column generation approach, specifically designed to find -

o . o gii Pi
strong bounds for the transmission scheduling problem. N=—r——-—"——.
Moreover, we implement a B&B algorithm where we 2j#,je7 QP T Vi
enhance the exclusion of non-optimal tree nodes byThe Quality of Service (QoS) is measured in terms of
exploiting the bounds derived in the previous section. Theg|NR. Hence, independently of nodal distribution and
(enhanced) algorithm is found to converge to the optimalyraffic pattern, a transmission from transmitieto its
solution faster. In Sectiorthe validity of our formulation corresponding receiver is successful (error-free) if the
and the performance of our techniques are evaluatedg|NR of the receiver is greater or equal to tapture ratio
Finally, in Sectiord, conclusions are drawn and directions ¥i. The value ofy depends on the modulation and coding

)

for future work are also given. characteristics of the radio. Therefore, we require that
Lﬁ Z W ©)
2. MODEL Y ii,je7 9jiPj i

The system model can be divided into two levels: the
network as a whole and the channel. Thus, we have3' PROBLEM FORMULATION

the network model and the channel model. The network

model concerns the general topology of the nodes and” this section, we present the problem of finding the
their characteristics. The channel model describes thdninimum possible number of time slots (or channels)
assessment of the link quality between communication@nd the corresponding transmitting powers, such that all

pairs and the interaction between the nodes in the networkg:ommumpaﬂon req_uests are belpg processed correctly
and Quality-of-Service (QoS) requirements for successful

transmissions are satisfied.

Note that to ensure feasibility of our problem we
In this study, we consider a network where the links arecan define the deadline of the network as follows. The
assumed to be unidirectional and each node is supportethaximum number of time slots that may be required is
by an omnidirectional antenna. For a planar networkequal to the number of linkd,Z|. Henceforth, we will
(easier to visualize without loss of generality), this can assume that the first time slot is at time 1; the latest point
be represented by a gra = (4,.¥), where 4/ is in time for which there can be a scheduled transmission is
the set of all nodes andZ is the set of the active thereforeD = |.Z|. The notation used for the networks in
links in the network. Each node can be a receiver or athis paper is given below (in Notatidt).

2.1. Network Model
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Notation 1 Notation used for the networks: 4. PRELIMINARIES

A | The set of all nodes in the network

7 The set of transmitters in the network Inequality @) depicts the QoS requirement of a

% | The setof receivers in the network communication pairwhile transmission takes place. After

Gij The channel gain on the link— j . . . . .

vi | The variance of thermal noise at the receiver manipulation it becomes equivalent to the following

li The interference power at th& receiver

I The SINR at thet" receiver gji Vi

% The capture ratio at thi& receiver pi = ¥ i pj+ (6)
jzies Gi Gii

D The deadline of the network

In matrix form, for a network consisting af communica-
To formulate the optimisation problem, we define two tion pairs, this can be written as
sets of decision variables, for each transmitter.7 and

timet = 1,...,D; processing-time variables: p=TGp+n (1)
1, if transmitteri is active at time wherel = diag(y), p = ( PL P2 ... Pn )T, ni =
% (t) = . @
0, otherwise ﬁ and
and power level variableg;(t) € R 0 i
Since the problem involves both integer and continuous Gij {gji M= J.,
decision variables, the mathematical formulation is LA L
classified as a Mixed Integer Program (MIP) and is given
in Model 1. Let
C=TIG, (8)

Model 1 Minimum number of time slots

so that ) can be written as

mlnlmlse 7= max zitx. (5a)
=7 (I-Cp=n ©)
subject to
Matrix C has strictly positive off-diagonal elements

Z)Xi(t)zl\fiei (5b)  which implies that it is irreducible, since we are not
t= . . . .

) considering totally isolated groups of links that do not
xi(t)=0=pi(t)=0vie 7,t=1,...,D, (5¢)

interact with each other. By the Perron-Frobenius theorem
[39], we have that the spectral radius of the mats
a simple eigenvalue, while the corresponding eigenvector
is positive component-wise. A necessary and sufficient
condition for the existence of a nonnegative solution to
inequality @) for every positive vecton is that(l —C)~1
exists and is nonnegative. Howevér— C)*l = 0 if and

xi(t) =1=gipi(t) zw( gjipj<t)+w> (5d)

jeT A

VieZ,t=1,...,D,
(t)e{0,1} Vie 7,t=1,...,D, (5e)
pi(t) e Ry Vie 7, t=1,...,D. (5f)

only if p(C) < 1 [39] (where p(C) denotes the spectral
radius ofC), or, equivalently,(C —1) is Hurwitz (since

Objective 63 minimises the number of time slots (C—1)is Metzler), see40].
needed to schedule all the transmitters in the network. Therefore, the necessary and sufficient condition for
For every transmittef € .77, 52 ;tx(t) is equal to the  (7) to have a positive solutiop* for a positive vectom
scheduling time, since only one &f(1),x(2),...,x(D) (i.e., there exists a set of powers such that all the senders
will be equal to 1. We define as the latest scheduling can transmit simultaneously and still meet their QoS
time for a transmission. We can linearise the objectiverequirements (minimum SINR for successful reception) is

by requiring T to be larger than or equal to all of the thatthe Perron-Frobenius eigenvalue of the matiixless
pairs’ scheduling time, i.eg > Zt 1txi(t) for alli e 7. than 1.

Constraint pb) ensures that each link in the network is

processed at least once in the schedule. Note that there is

always an optimal schedule in which each linkis processeds,. COMPUTATIONAL COMPLEXITY

only once. Constraint5g) makes sure that if a pair is not

processed at a specific time slot, then the power level ofrpegrem 1

the corresponding transmitter is O at that time slot. Thep,gpiem B) is NP-hard.

QoS conditions are guaranteed by constrabd).(The

constraint only affects the optimisationf(t) takes the  Proof

value 1. Finally, the last two constraintsg and 6f) define The statement of Theorerhh is equivalent to saying:
the admissible values for the decision variables. deciding whether the optimal value &f)(does not exceed a
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given valuex € IN is NP-hard. We construct a polynomial- and hence, p(C) < 1, where C consists of
time reduction of the Graph Colouring problem, whichis i,j €V, j #i,{i,j} ¢ E. We conclude that constraint
well known to be NP-hard1]. Given an undirected graph (5d) is also satisfied by our choice of and p € R.

G = (V,E) with nodesv = {1,...,n} and edges Note that the objective functiorb§) evaluates td for the
S S constructed solutio(, p), which implies that the optimal
EC{ii}-iievi#j}, value of ) must be smaller or equal th

as well as a scaldre IN, the Graph colouring problem asks N the second step, we use a feasible solutionjo (
whether there is an assignmentV — {1,...,k} of nodes with objective valug] to construct a valid colouring of the
to k colours such thaf (i) # f(j) for all {i,j} € E, that graphG with at most{ colours. Assume that we have a
is, neighbouring nodes must have different colours. Ourfeasible solutiorix, p) for problem ©) with objective value
reduction takes as input a Graph colouring instance and - Since we consider a minimisation problem, without loss
generates an instance & Guch that the optimal value of Of generality we can assume thpP ; x;(t) = 1. Hence,
problem §) does not exceexl = kif and only if the answer ~ We obtain a function if we set(i) :=t if and only if

to the Graph colouring problem is affirmative. Towards this X (t) = 1. Furthermore, since the objective valuie)(of
end,wese/ :=V,D:=|V|=n, ¥ :=E,y= (1,,”71)1 (%, p) is ¢, the range off is limited to{1,...,{}. We now

vi=0Vie#and show thatf constitutes a valid colouring of gragh, that
o is, f(i) # f(j) for all {i,j} € E. Assume to the contrary
1 if {i,j} €E, that there is{i, |} € E with f(i) = f(]) = . In this case,
gij =4 1/2 ifi=j, (%, p) must satisfy the constraints
1/(2n) otherwise. 1
. _ o - _ r(f) >2 i©+= i(€) >2p(
The size of this reduction is polynomial in the size of pit) = (ifTee pi(®) n je\%#p‘( )z p]()

the Graph colouring instance. Hence, if we show that the {lil¢E
optimal value of §) does not exceed if and only if
the answer to the Graph colouring instance is affirmative,and
we have proven that the solution df)(is NP-hard. We . 1 . R
proceed in two steps. Firstly, we show that if thereisa  Pi()=2 3 p®)+ > pi(f)=2p(),
Graph Colouring that use& colours, then the optimal {Ji}eE eV, j#i
value of 6) is smaller or equal td. Secondly, we show {iiyeE
that if there is a feasible solution fo5) of value ¢,
then we can construct an admissildlecolouring for the
Graph Colouring instance. The assertion follows from
the combination of both arguments and the fact that we
consider a minimisation objective.

As for the first step, assume that there exists a colouring
f:V —{1,...,{}. Given this colouring, we construct a 6. SOLUTION APPROACHES
feasible solution(x, p) of objective value(. Towards this )
end, we sek;(t) :=1if f(i) =t andx;(t) := 0 otherwise,
Vi e 7. Likewise, setpi(t) :=f (fi € Ry) if f(i) =t
and pi(t) := 0 otherwise, for ali € 7 andt =1,...,D.
By construction, constraint$l), (5¢), (5€) and 6f) are
satisfied, for any valug;,”pj € R. Fori € 7 andt €
{1,...,D} with x(t) = 1, constraint §d) requires that

which contradicts the assumption ti{atp) is feasible for
problem ). We conclude that the constructed functibn
indeed constitutes a valig-colouring of the grapie. As a
result, problem&) is NP-hard. O

In this section, we propose solution approaches for the
wireless scheduling problem with power control (Model
1). In particular, we firstly describe lower (LB) and
upper bounding (UB) techniques. In addition, we describe
solution methodologies designed to converge to the
optimal solution for the cases when the optimality gap

1 using the bounds is not closed. As aforementioned, these
Pt =12 Z Pit) |+ > P algorithms make use of the derived bounds, thus enhancing
{i.jjeE J{f\f}JgE' their performance in terms of computational efficiency.

Sincef constitutes a valid colouring, the first term on the 6.1. | ower and Upper bounds

right hand-side must evaluate to zero, because otherwise,

the spectral radiup of the matrix that is constituted by ©-1.1. Lower Bounds _ _ _
{i.j} € E is greater than 1 and hence the network would Algorithm 1 presents a lower bounding technique thatis

be infeasible, as described in Sectibron the other hand, based on a sorting process whose metric is the number of
when the first term of the right hand-side is zero, the hodes that each node cannot be simultaneously processed

second term fulfills the inequality, since with. The algorithm begins with setting valuas equal to
1 if nodesi and j cannot be simultaneously processed, 0
VZ 1 <1=|Cllo < 1, otherwise. We can check if two nodes can be processed
JEV I, simultaneously by isolating them as a network and by
{i.J}¢E checking its spectral radius. We construct €kt= .4
Trans. Emerging Tel. Tech. 2012; 00:1-13 © 2012 John Wiley & Sons, Ltd. 5
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and sort it in decreasing order according t§ &j, note that the members of the infeasible pair cannot be

I3 both present in the final slot. Furthermore, neither of the
i.e. the number of the nodes which nodecannot be  members can be scheduled at any previous time slots
simultaneously processed with. The first member of sety,y construction of the lower bound). Hence, one of the

CL is deemed as the first slot leader. Then, each nodgnembers of the pair must be scheduled in a new time slot.
in position 2 onwards is checked with all the nodes in

previous positions. If a nodean be simultaneously present 1 2 Upper Bound
in the same time slot with any one of the checked nodes, | the literature, upper bounding techniques are

then the node is removed from s€L. Otherwise, it  gescribed as approximation scheduling methods (see for
becomes a slot leader. The number of slot leaders at th%xample B2, 33,35 and references therein). We describe
end of this operation is the obtained lower bow® Note o non-trivial upper bound methods that, when combined
that due to the fact that we check if two nodes can beyh strong lower bounding techniques, are capable of
in the same slot in each case, and not the whole set Of:Iosing the optimality gap, hence finding the optimal
nodes assigned to the specific slot, this scheme will allowsoytion efficiently. We first describe a simple yet effeetiv
more nodes in the slot than it would otherwise admit (the heyristic, based on a priority scheduling policy. The
final selection is therefore not necessarily feasible), andyerived solution value, referred to kB, serves also as
hence less slots will be required in total. That is why this 5 ¢yt-off value in the B&B approach described in the next
methodology constitutes a lower bounding technique.  sybsection. The basic idea of the policy is to keep adding
new transmissions at the current time slot according to

Algorithm 1 Lower bounding techniqueB a priority criterion, until no more transmissions can be
initialise scheduled without violating the SINR constraints. In such
1,if p([0,cij;cji, 0)) > 1 o a case, the next time-slot is considered, and the process
Setej 0. otherwise Vi,je Zandset s repeated for all the remaining unscheduled transmission
) ’ ) ) pairs. Note that for each node considered for a time slot, the
CLi =i. ResorCL in decreasing order 012 &ij- spectral radius of the matrix that constitutes the netwsrk i
Setk <. 2. €7 calculated, which takes tim@(n3). In our algorithm, the
priority value of pair € .7 is found using
while k < |CL| do Viyi
i < ClLy. Ri=g (10)
for m=1tok—1do ) ) )
j < CLm. yvh|ch effectl_vely r_epresents the power that transml_tter
if p([0,Gij;¢ji,0]) < 1 then i prodl_Jces in a time slot wher_1 it is _the c_mly act_lve
Remove from CL. transmitter. The complete heuristic algorithm is desdibe
Ko k—1 in Algorithm 2 below. Note that sef (in the description
Exit FOR loop. below) contains all transmission pairs in decreasing order
end if of their priorities.
end for
K—k+1 Algorithm 2 Upper bounding technique
end while initialise
SetLB «+ |CL]|. S=0
return LB A = {is,....ij7lik € T,k < [T[R,, =
le if k1 < kz}
We also present a variation of the lower boubB, UB«0
referred to asLB’, which includes two additional steps .
to Algorithm 1. The first addition to the algorithm is while S# Ado
performed at the end of each iteration of the WHILE et %0
loop. In particular, we update valueg for i, j € CL and for_ I € Ado . .
consequently update and resort 8&t The final addition ifjUst Sat'Sﬂ?S SINR constraintaen
is a checking process which may increase the lower bound et «— set_u i}
by 1. To explain this, Algorithml implicitly assumes that A A\{l_}
a number of nodes can be simultaneously executed in S% Su{i}
the same time slot if they at least can be simultaneously end if
executed with the so-called slot leader. In polynomial time end for
we can check whether the nodes implicitly assumed to UB%UB+1
be executed with théinal slot leader cannot be pairwise end while
simultaneously executed. If we can find such “infeasible”
pairs, thenLB' is equal toLB+ 1. To clarify this, we return UB
6 Trans. Emerging Tel. Tech. 2012; 00:1-13 © 2012 John Wiley & Sons, Ltd.
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Note that, in this case, since not the optimal set of We also present a variant of the upper bounding
pairs is chosen to be admitted in each slot, the allocatiortechnique given in Algorithm3 which includes an
of the pairs will be suboptimal and the number of slots additional step. In particular, we add a resorting procéss a
required will be an upper bound for the minimum number the end of each iteration of the WHILE loop. The process
of slots. For constant noise, the priority value is equivble finds the minimum total power emitted by the nodes in
to the sorting in 2] of the links by nondecreasing order each seSsuch that the SINR constraints are satisfied. The
of length. However, apart from taking into account that sets are then resorted in increasing order of the total power
thermal noise could differ at the receivers, our approachThe idea is to add more members to the sets with lower
calculates the spectral radius of the matrix each time gpower levels first. The resulting upper bound is referred to
node is admitted in a network, thus allowing for variable asUB”. Our upper bounding techniques are compared is
power; hence, it is less conservative than affectedness Section7 with ApproxLogN algorithm proposed in32],
andaffectance used in B2] and [33], respectively, since it which is considered the current state-of-the-art.
is essentially a metric larger thdi€||», which is already
conservative42). 6.1.3. Column Generation method

While UB produces very good upper bounds, we We also describe a column generation technique, based
propose an additional upper bounding algorithm, calledon an alternative formulation of the original problem,
UB' and described in AlgorithrB, that in some instances which is capable of providing both a lower bound and
(but not all) outperformsUB. This approach chooses an upper bound. It is important to note that the main
the order by which the nodes enter a network by thecontribution of the method is the fact that it obtains
interference they experience. The algorithm is as follows.stronger lower bounds. The new formulation uses an
The first step of the algorithm is to calculate the sum explicit representation ofeasible sets of transmission
of each row and column in matri€ as given by §). pairs. A set of transmission paissC .7 is said to be
The sum of each column represents the interferencdeasible if the simultaneous execution of all the pairs in
caused by the particular node while the sum of each row the set does not violate the SINR constraits)
represents the interferenezperienced by the particular The new set covering formulation, given in Model
node. The algorithm chooses the node with maximum2 incorporates the complete set of feasible sets of
caused interference and places it in a time slot. Thetransmission pairs,S. A binary decision variable is
algorithm then checks the remaining nodes in decreasin@ssociated to each feasible sequenees, defined as
order of the interference experienced. If a node is feasible
with the members in a time slot, then it is included in the {1’ if setsis used in the optimal solution;

s =

same set. Otherwise, it is placed in a new time slot. 0. otherwise.

Model 2 Set covering formulation

Algorithm 3 Upper bounding technique

initialise _ minimise 25195 (11a)

Setsumrows; < cji andsumcols Z Gj. Find &

icol ¢ 7 such hJ'Ev' | ] - ie7 subject to

icol € 7 such thasumcol 5 is maximum. 9> 1 vie 7 11b

Setk « 1 andS « {icol}. UpdateZ « 7 \ {icol}. 2.0 ! (110)
9s € {0,1} VseS (11c)

while 7 # 0do

Findirow € .7 such thasumrowsqy is maximum.
for m=1tokdo
if irowU Sy, satisfies SINR constrainteen

The objective is to minimise the number of sets that are

S ¢ SmU{irow} required in the optimal solution. Constrainfislp) ensure
Exit FOR loop. that the solution includes at least one set for each pair
eniinf(cj)rlf i € .7 and constraintsl(L9 define the allowable range of

values for the decision variables.
In order to efficiently manage the complexity of the
exponential number of variables, we solve the continuous

if irow could not be placed in any of the s&then
k< k+1, S « {irow}

end if . relaxation of Model2 (master problem) via a column
4 59\{”0\'\'} generation scheme. The master problem is given by
end while equations {18, (11b) and 0< Js < 1Vse S The optimal
solution is given a&Bcg, a valid lower bound to Model.
SetUB « k. The master problem is initially solved usigC S, an
return UB initial subset of se, and the dual valueg’, associated
Trans. Emerging Tel. Tech. 2012; 00:1-13 © 2012 John Wiley & Sons, Ltd. 7
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to constraints {1h), are found. New variables (sequences) including the ones which were enumerated prior to the
are generated one-by-one by finding s#ts- Ssuch that  column generation as well as the ones found using the sub-

the dual constraint problem (ModeB). Let Sbe the collection of all these sets.
z <l (12)  If we solve Model2 by substitutingSwith SC S, then the
ies* solution value found will be an upper bound to the original
is violated, i.e. such that problem. This upper bound is denotedicg.
iclhes T >1te 6.1.4. Branch & Bound Approach

For the purposes of this paper, we implement B&B
Sets" is found by solving ModeB, the sub-problem, which  approaches, which at the initialization stage set theietow
finds a feasible set of transmission pairs of maximumbound as the maximum of lower bound$ and LB’
violation. For the mathematical formulation, we define and the upper bound (cut-off value) as the minimum of

binary decision variables: upper bounddJB, UB' andUB". It is possible also to
add feasible cuts, i.e. constraints which aim to exclude
-], ifpairi e 7 ispresentinthe sat any solutions which we are certain to be non-optimal. For
G= 0, otherwise example, we may add constraints which force infeasibility

on the solutions found with our upper bound techniques.
and decision variableg; € R*, the power level of pair As a result, the B&B algorithm will try to find the best

ie 7. solution not equal to the latter solutions, and if it cannot,
then the excluded solutions were optimal. We classify such
Model 3 Sub-problem cuts as “pairwise” and “all”, denoting feasibility cuts tha

disallow the simultaneous execution of pairs of nodes and
of a number of nodes greater or equal to 2, respectively.

maximize i 13a L. . . .

i;/“ (132) For “pairwise” cuts, we can find the pairs using complete
subject to enumeration (as we did in Sectiéril.l). For “all” feasible
G=0=p=0 Vies (13p) ~ Cuts, we |nclud_e the “pairwise” cuts as V\{ell as thg sets
G=1= g > y( W) vie 7 (13¢) of solutions derived from the upper bounding techniques.

ChT A jes A#ig"“’ ' ' These are not strictly speaking “infeasible”, but we do not

Zefo1} Vie s (13d) Ios_e optimality by excluding them frpm the search since
their solution value has been noted via the “cut-off” value.
We refer to the B&B approacheBBpgjrcuts and BBeys,

as the B&B algorithms incorporating “pairwise” and “all”
cuts, respectively. For benchmarking purposes, we also use
another B&B approach, referred to as BB, which is generic
as it only implements CPLEX'’s default settings (no bounds
are incorporated).

i € RY Vie T (13e)

The objective functioni33 aims at finding the maximum
violation associated to a feasible set of transmissiorspair
Constraints 13b) and (L3¢) ensure that if a transmission
pair is not present in the set, then its associated powelr leve

is zero and for all pairs in the set, the SINR conditions are

satisfied, respectively. Finally, constrainis@) and (139 7. PERFORMANCE EVALUATION

define the allowable values for the decision variables.

The master problem and sub-problem are solvedAll the algorithms as well as the lower and upper bounding
repeatedly until no more sequences violating constraintechniques described, have been implemented in Microsoft
(12) can be found. Significant improvements in terms Visual Studio 2005 C++ using CPLEX v12.1 and run on an
of the speed of the column generation methodologyIntel Core 2 computer, with 2.5GHz processor and 3.5GB
are achieved by constructing and inserting a populationof RAM.
of feasible sequences before the column generation Throughout the paper, we sgt =3 andv; = 0.04
is invoked. The population includes all the sequencesmWatts. For each example, the selected number of nodes
which include up to two pairs, found using complete is uniformly and independently distributed on a square of
enumeration. We also include a subset of the sequenceside 100n, making sure that no two nodes have distance
with at least three pairs, constructed using the heuristidbetween them less tharml The links are constructed
approach described in Secti6ri.2 with a neighbor algorithm, i.e., each transmitting node

Note that, by the end of the column generation approachwill choose a neighboring node as its receiver. Then, the
afractional value for the master problem may be found. Inchannel gaingyj; are obtained by considering distance
such a case, the value can be rounded up to the neareattenuation only, i.egji = (do/d)?, wheredy = 1m and
integer, thus guaranteeing feasibility of the solution. a=4.

Finally, at the end of the column generation approach, The algorithm begins with the computation of a lower
a number of feasible sets of transmission pairs is foundbound {B) and an upper boundJB) according to the

8 Trans. Emerging Tel. Tech. 2012; 00:1-13 © 2012 John Wiley & Sons, Ltd.
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techniques described in Sectiéril.1and the techniques Computational time vs Size of network
described in6.1.2 respectively. It is evident that i£B

has the same value 4$B, any optimisation technique 0.6
is redundant; the heuristic solution would be optimal for 05
the transmission scheduling problem. For the networks
for which the calculated upper and lower bounds have
different values (e.g., if upper bouad and lower boung

3) we use optimisation techniques in order to close the gap
and hence, obtain the optimal solution. At this stage, the
initial pairwise cuts are found and added to the problem.

After determining the bounds, if the optimal solution
is not found, we use Branch & Bound (B&B) which
utilises the calculated bounds in order to derive the oftima 10 20 30 40 50 60
solution faster. The apparent gain from determining ag tigh Number of pairs in the network
bounds as possible is the decrease in CPU time required Computational time vs Size of network
by the B&B technique. Apart from the optimisation | 102
techniques, a column generation (CG) optimisation
approach was designed in order to find stronger bounds for
the transmission scheduling problem. The performance of
CG was then compared with the other methods.

The performance of our algorithms was evaluated for
60 different networks of six different sizes: 10, 20, 30, 40,
50 and 60 pairs of nodes. For each size we investigated
10 different networks. The performance of the algorithms
is evaluated on three aspects: (a) the algorithms’ speed,
(b) their scalability, and (c) their success at finding an
optimal solution. Most bounding algorithms considered in 10 20 30 40 50 60
the literature, consider only upper bounding techniques Number of pairs in the network
and therefore, a fair comparison can be done only for the

0.4

0.2

Computational time (sec)

0.1

0.8

0.6

0.4

0.2

Computational time (sec)

upper bounding methods proposed. Figure 1. Average CPU times for the UB and LB algorithms. It is
Figure 1 corresponds to the computational time for easy to see that tlhe computational complexity of the allgor.ithms
the LB and UB techniques for the networks COnSideredscales linearly with the number of communication pairs in the
is low for small networks and also it scales linearly with
the number of communication pairs considered in the
network. As a result, the algorithms succeed in having a.
low computational cost and good scalability properties.
order to get insight as to whether the non-trivial bounds Figure 2.LB, UB and optimal values for all networks
designed perform well against the optimal values. For theconsidered. The networks from left to right are put in order such
figure, we can easily observe that for small networks thethat each of the first 10 networks consists of 10 communications
bounding algorithms provide bounds which converge topairs. Then, every 10 networks the number of communication
remain close to the optimal value.

In Figure 3 it can be deduced that the UB algorithm
produces slightly better results than the LB, since it 6.1.2 did not converge to the optimal value for 35 of them.
matches the optimal solution more often than the LB It is remarkable to note that the lower bound, which was
algorithm also outperformapproxLogN [32]. lower bound is tighter than existing results.

For the networks for which the Bounds algorithms As shown in Tablel, the computational cost for both
(Sectionss.1.1and6.1.2 did not converge to the optimal lower and upper bounds is very small. When these
value we have used optimisation algorithms. From a totalbounds are incorporated into the B&B algorithm we

. . i twork.
of different sizes. The figure demonstrates that the newer
computation time for both the lower and upper bounds

In Figure 2 we compare the upper and lower bounds[
with the optimal value for each network considered, in
the optimal value fast and with high probability, whereas pairs increases by 10.
for larger networks the bounds are not tight, but seem to
algorithm but they both remain close to the optimal value always the weakest bound, has comparable results to the
as the number of communication pairs increases. Our UBJpper bound; that illustrates that the derived non-trivial
of 60 networks, the Bounds algorithms (sectiéns.1and have significant improvements in the performance of the
algorithms and this will be shown next in Sectioni.
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Table I. Average calculation time and total calculation time vs optimality

Average offset from optimal solution

Figure 3. Average distance of bounds from the optimal value for
networks of size 10, 20, 30 40, 50 and 60 communication pairs.

7.1. Evaluation of the CG and B&B techniques

Average Average Average normalised

calculation  calculation  maximum calculation  Optimality pt®nality
Number of time for LB time for UB time for LB for UB Optimality
Nodes (sec) (sec) Mdtielue) | (%) (%) (%)
10 0 0.0733 0.0073 80 100 80
20 0.0016 0.1357 0.0068 40 90 30
30 0.0032 0.2329 0.0078 60 60 40
40 0.0063 0.3388 0.0085 80 60 40
50 0.0063 0.5422 0.0108 70 50 40
60 0.0095 0.5813 0.0097 20 70 10
Averages: 0.0068 0.317 0.007 58.33 71.67 40.00

Average offset vs Size of network We can conclude that although CG is designed as a

2 - - — lower bounding approach, in fact, all B&B variations are
© opmalsoluon . : faster. The only exception are two networks, where CG

—v—  Upper Bound
—=— ApproxLogN [32]

10 20 30 40 50 60

Number of links in the network

performs slightly better than most of the B&B algorithms,
except from theBBpajrouts. Given CG's low optimality
performance and its underperformance time-wise, we
can infer that the scenarios where CG would be more
appropriate than B&B cuts or B&B with pairwise cuts
are limited and negligible. Due to CG’s poor performance
we conclude that it is not an attractive approach for the
solution of the scheduling problem.

8. DISCUSSION

In this paper, we studied the MLTS problem when power
control can take place, i.e., the problem of minimising
the number of time-slots required for scheduling all the

For the 35 networks whose optimal solutions were notwireless nodes in a given network for the abstract physical
found using the bounds, the CG method converged for 9nodel when power control is allowed. The contributions
networks (25.7%). Figuré compares the performance (in of this paper are as follows.

CPU time) of the CG and B&B approaches for these 9(a) We proved that this problem is NP-hard. Contrary to
networks.

Computational time (logarithmic scale)

Figure 4. Performance of CG with respect to the B&B algorithms

10

Comparison of computational cost: CG vs B&B

10°

——CG

X —eo— BnB

107 £| ——BnB w Cuts

- v- BnB w pairwise cuts N,
10! x

/,//
10° e v ¥
10°! 18
2 4 6 8

Networks for which CG converged

for the 9 networks that CG converged.

existing approaches and results, our formulation includes
the choice of optimal transmitting powers and arbitrary
topology. Furthermore, the generality of the abstract
physical model implies the complexity of the geometric
physical model and completes the theory that the minimum
latency transmission scheduling problem with power
control for the physical model in general is NP-ha@D][
and B5] prove NP-hardness for the geometric physical
model without and with power control, respectively, and
not the abstract physical model. For the abstract physical
model NP-hardness is proven i€, but for constant
power levels. The NP-hardness proof for the abstract
physical model with power control has been missing (the
open problem posted in38]). Through our proof the
conditions for which this problem becomes equivalent to
graph colouring problem are presented. This would be
helpful to know in scenarios in which we are asked to
construct the network and hence, we will be able to avoid
conditions that would make the computational complexity
large.
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(b) We have developed non-trivial lower and upper boundswhen evaluating approximation algorithms or distributed
that can, in many instances, provide the optimal solutionalgorithms for scheduling when knowledge of the whole
to the problem. In our simulations, it is illustrated that network is unavailable.

the upper bound is better in general than the lower bound Current research focuses on finding bounds that
and outperforms the current state-of-the art approximatio guarantee that the error lies within a maximum distance
algorithm @pproxLogN [32]). The lower bound was from the optimum solution, or, even prove hardness-of-
shown to be better than many other approaches (e.gapproximation for an arbitrary gain matrix, i.e., that no
relaxations of optimisation formulations of the problem), reasonable approximation algorithms can be developed
but still remains an open problem. for this problem. In addition, future work includes the
(c) Even if the bounds do not converge to the implementation of the suggested algorithms on a Field-
optimal solution, then when incorporated into the MILP Programmable Gate Array (FPGA) whose computational
formulation, it provides a considerable improvement in performance will be compared with those coded on
terms of computational time, as shown in the performancea PC using CPLEX. Furthermore, the development of
evaluation. As a result, the combined methodology scalesapproximation algorithms for the transmission scheduling
to problems of nontrivial size. The column generation problem for the abstract physical model is part of on-
approach (also appearing in many optimisation problems)going research. Finally, a distributed algorithm poses a
has poor performance when compared to our problemvery challenging task and still remains an open problem.

specific B&B approach and hence, it is not an attractive
approach for the solution of the scheduling problem. Other

approaches, such as Cutting Plane, have been investigated

(see for examplel])) but they were proved inferior to B&B
approaches.
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