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ABSTRACT

In order to alleviate interference and contention in a wireless network, we may exploit the existence of multiple orthogonal
channels or time slots, thus achieving a substantial improvement in performance. In this paper we study a joint transmission
scheduling and power control problem that arises in wireless networks. The goal is to assign channels (or time slots)
and transmitting powers to communication links such that all communication requests are processed correctly, specified
Quality-of-Service (QoS) requirements are met, and the number of required time slots is minimised. First, we formulate
the problem as a mixed-integer linear programming (MILP). Then, we show that the problem considered is NP-hard and
subsequently, we propose non-trivial bounding techniquesto solve it. Optimisation methods are also discussed, including
a column generation approach, specifically designed to find bounds for the transmission scheduling problem. Moreover,
we develop optimisation techniques in which the bounding techniques are integrated in order to derive the optimal solution
to the problem faster. We close with an extensive computational study, which shows that despite the complexity of the
problem, the proposed methodology scales to problems of nontrivial size. Our algorithms can therefore be used for static
wireless networks where propagation conditions are almostconstant and a centralised agent is available (e.g. cellular
networks where the base station can act as a centralised agent or wireless mesh networks), and they can also serve as
a benchmark for the performance evaluation of heuristic, approximation or distributed algorithms that aim to find near-
optimal solutions without information about the whole network. Copyright c© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Wireless technology standards provide a radio-frequency
(RF) spectrum with a set of many non-overlapping
channels, and a node has the option to choose on which
channel to transmit. Likewise, in cases where only a
single channel is available, it is possible to divide time
into frames, and then frames can be divided into time
slots, such that at each frame a node has the option to
choose on which time slot to transmit. In the latter case,
synchronisation of the wireless nodes in the network is
necessary. If synchronisation is not considered, however,
choosing a channel or a time slot in the network becomes

†Preliminary results of this work have been published as a Technical Report in [1].
∗This research was sponsored in part by the Swedish Foundation for Strategic
Research, SSF, under the RAMCOORAN project.

the same problem. It is important to schedule channel/time
slot access in such a way so that spatial reuse is fully
exploited and hence the number of channels required to
successfully complete all requests is minimised.

Power control has been a prominent research area with
increased interest (e.g. [2–9]). Increased power ensures
longer transmission distance and higher data transfer rate.
However, power minimisation not only increases battery
lifetime, but also the effective interference mitigation
that increases the overall network capacity by allowing
higher frequency reuse. Power control has been extensively
employed for MAC in multi-hop wireless networks (for
example in [10–15]). Some of them aim to minimise
power dissipation. For example, [16] proposes a two-
phase method for the joint scheduling and power control
which aims to find an admissible set of links along
with their transmission power levels in a single channel

Copyright c© 2012 John Wiley & Sons, Ltd. 1
Prepared using ettauth.cls [Version: 2012/06/19 v2.10]



On the Minimum Latency Transmission Scheduling in Wireless Networks T. Charalambous et al.

only. [17] study the same problem as in [16], but it
focuses on minimising the scheduling length. Others, such
as [18] and [11], aim to maximize throughput at the
cost of increased power dissipation by allowing many
simultaneous interference-limited transmissions. In such
schemes either time is divided into fixed-length slots
or there exist many channels and the wireless nodes
have to choose on which one to transmit. The minimum
latency scheduling problem (see for example [19–21]
and reference therein) and the computation of efficient
schedules for the abstract physical model with power
control (for example in [10, 11, 14–16, 22–24]) have
been both extensively studied. However, many approaches
concentrate, for example, on throughput maximisation in a
single or multiple channels (e.g., [25,26]) and scheduling
length minimisation (e.g., [27, 28] and reference therein),
rather than the minimisation of the number of channels
or time-slots required. A wide range of applications for
wireless networks are time-critical and impose stringent
requirement on the communication latency. For example,
a given rate demand is requested (that should be satisfied
with minimum-length periodic scheduling actions) or
a given volume of traffic must be delivered to the
destinations in minimum time. However, minimising
the scheduling length requires coordination between the
wireless nodes in order to orchestrate the order, duration
and initialisation of transmissions, something which
introduces extra communication overheads. On the other
hand, minimum latency transmission scheduling does not
require the communication between the nodes, but simply
synchronisation to a global clock in the network, so that
the nodes are able to know the beginning and the end of
slots.

When studying wireless networks, the choice of model
is crucial. Not only must the chosen model facilitate the
design of protocols, but it also has to truthfully reflect
the nature of the real network. Fading-channel models
depict real-world phenomena in wireless communications.
These phenomena include multi-path fading, shadowing
and attenuation with distance. While fading effects have
been considered as detrimental in 2G wireless networks,
in 3G networks they are seen as an opportunity to
increase the capacity that incorporate data traffic [29]. The
most common fading-channel model being used is the
physical model, which is thoroughly described in Section
2. On a finer granularity, one distinguishes between
the geometric and theabstract physical model. In the
geometric physical model the channel gain between two
nodes is solely determined by their spatial distance. Hence,
simplifying assumptions are incorporated into this model,
for example, the radios are perfectly isotropic and there
are no obstructions [30]. In the abstract physical model
the channel gain between two nodes incorporates all the
real-world phenomena and hence no information can be
extracted about the geometry of the network.

The rest of the section concentrates on the related
work that considers transmission scheduling under the

(geometric and abstract) physical model only. For the
geometric physical model, the NP-hardness of wireless
scheduling without power control is proven in [30]. In
[31] it is proven that strategies in the geometric physical
model that use uniform power assignment schemes (same
power to all nodes in the network) or linear power
assignment schemes (power levels proportional to the
minimum power required to reach the receiver node) have
a bad scheduling complexity. In addition, they propose a
power-assignment algorithm that successfully schedules a
network using a poly-logarithmic number of time slots.
Approximation scheduling algorithms (see for example
[32, 33]) are proposed that compute a feasible solution in
polynomial time for the geometric model with worst-case
approximation guarantees for arbitrary network topologies
when the power levels are constant. In [34] it is shown
that solutions with oblivious power assignments (the
power level of a node depends only on the transmitter-
receiver distance) cannot compete with solutions using
possibly different power levels and channels for a network.
However, they are capable of achieving nearly the same
performance as solutions restricted to symmetric power
and channel assignments. For the geometric physical
model, the NP-hardness of wireless scheduling without
power control is proven in [30] and with power control is
proven in [35], given that we know minimum (Pmin > 0)
and maximum (Pmax < ∞) transmission power levels.

When considering the abstract physical model less
information has to be considered and the values in the
gain matrix are not restricted by the topology of the
network (not every gain matrix of the abstract model can
be expressed as a network, and on the contrary every
gain matrix of the geometric model could be a case
for the abstract model), i.e., in the geometric physical
model we have the advantage of exploiting the geometry
of the network in order to check complexity and to
design scheduling algorithms. In [36] the NP-hardness
of wireless scheduling without power for the abstract
physical model is proven and the problem is analytically
solved via a Column Generation approach. However,
in order to achieve best performance, scheduling and
power control should be optimised jointly. This problem
is notoriously difficult to solve, even in a centralised
manner. In [37], this line of research is followed and
the transmission scheduling problem for minimising the
total number of slots (channel or time) for variable
power levels is formulated. However, in this work they
considered non-problem specific analytic solutions that are
computationally expensive.

We consider the abstract physical model and the
contributions of this paper can be summarised as follows.
(i) We first prove that the minimum latency transmission
scheduling (MLTS) problem for the abstract model is
NP-hard for variable power levels. Contrary to existing
approaches and results in the literature, our formulation
includes the choice of optimal transmitting powers and
arbitrary topology. Furthermore, the generality of the
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abstract physical model implies the complexity of the
geometric physical model and completes the theory that
the transmission scheduling problem with power control
for the physical model in general is NP-hard. This answers
the open problem posted in [38].
(ii) We then propose non-trivial upper and lower bounding
techniques that, for many cases, are able to find the optimal
solution without the need of other optimisation methods.
(iii) For the networks where the optimality gap is not
closed, some approaches are discussed that solve the
exact transmission scheduling problem with power control.
While classical techniques are being used from the
literature to solve the exact problem, they are tailor-made
to the problem and are also combined with our the effective
bounding techniques that provide very good upper and
lower bounds for the problem, thus achieving enhanced
computational performance.

The rest of the paper is organised as follows. In Section
2 the employed system model is described. Section3
employs the conditions imposed by the model to formulate
the transmission scheduling problem for variable power
levels as a Mixed Integer Linear Programming (MILP)
problem. Section4 derives some global conditions for
feasibility of the network. Section5 shows that the
problem considered is NP-hard, whereas Section6
firstly presents lower and upper bounding algorithms.
Further solution methodologies are discussed, including a
column generation approach, specifically designed to find
strong bounds for the transmission scheduling problem.
Moreover, we implement a B&B algorithm where we
enhance the exclusion of non-optimal tree nodes by
exploiting the bounds derived in the previous section. The
(enhanced) algorithm is found to converge to the optimal
solution faster. In Section7 the validity of our formulation
and the performance of our techniques are evaluated.
Finally, in Section9, conclusions are drawn and directions
for future work are also given.

2. MODEL

The system model can be divided into two levels: the
network as a whole and the channel. Thus, we have
the network model and the channel model. The network
model concerns the general topology of the nodes and
their characteristics. The channel model describes the
assessment of the link quality between communication
pairs and the interaction between the nodes in the network.

2.1. Network Model

In this study, we consider a network where the links are
assumed to be unidirectional and each node is supported
by an omnidirectional antenna. For a planar network
(easier to visualize without loss of generality), this can
be represented by a graphG = (N ,L ), where N is
the set of all nodes andL is the set of the active
links in the network. Each node can be a receiver or a

transmitter only at each time instant due to the half-duplex
nature of the wireless transceiver. Each transmitter aims
to communicate with a single node (receiver) only, which
cannot receive from more than one node simultaneously.
We denote byT the set of transmitters andR the set of
receivers in the network.

2.2. Channel Model

The link quality is measured by the Signal-to-Interference-
and-Noise-Ratio (SINR). The channel gain on the link
between transmitteri and receiver j is denoted by
gi j and incorporates the mean path-loss as a function
of distance, shadowing and fading, as well as cross-
correlations between signature sequences. All thegi j ’s are
positive and can take values in the range(0,1]. Without
loss of generality, we assume that the intended receiver of
transmitteri is also indexed byi. The power level chosen
by transmitteri is denoted bypi. νi denotes the variance
of thermal noise at the receiveri, which is assumed to be
additive Gaussian noise. The interference power at theith

node,Ii, includes the interference from all the transmitters
in the network and the thermal noise, and is given by

Ii = ∑
j 6=i, j∈T

g ji p j +νi. (1)

Therefore, the SINR at the receiveri is given by

Γi =
gii pi

∑ j 6=i, j∈T g ji p j +νi
. (2)

The Quality of Service (QoS) is measured in terms of
SINR. Hence, independently of nodal distribution and
traffic pattern, a transmission from transmitteri to its
corresponding receiver is successful (error-free) if the
SINR of the receiver is greater or equal to thecapture ratio
γi. The value ofγi depends on the modulation and coding
characteristics of the radio. Therefore, we require that

gii pi

∑ j 6=i, j∈T g ji p j +νi
≥ γi. (3)

3. PROBLEM FORMULATION

In this section, we present the problem of finding the
minimum possible number of time slots (or channels)
and the corresponding transmitting powers, such that all
communication requests are being processed correctly
and Quality-of-Service (QoS) requirements for successful
transmissions are satisfied.

Note that to ensure feasibility of our problem we
can define the deadline of the network as follows. The
maximum number of time slots that may be required is
equal to the number of links,|L |. Henceforth, we will
assume that the first time slot is at time 1; the latest point
in time for which there can be a scheduled transmission is
thereforeD = |L |. The notation used for the networks in
this paper is given below (in Notation1).

Trans. Emerging Tel. Tech. 2012; 00:1–13 c© 2012 John Wiley & Sons, Ltd. 3
DOI: 10.1002/ett
Prepared using ettauth.cls



On the Minimum Latency Transmission Scheduling in Wireless Networks T. Charalambous et al.

Notation 1 Notation used for the networks:

N The set of all nodes in the network
T The set of transmitters in the network
R The set of receivers in the network
gi j The channel gain on the linki→ j
νi The variance of thermal noise at the receiveri
Ii The interference power at theith receiver
Γi The SINR at theith receiver
γi The capture ratio at theith receiver
D The deadline of the network

To formulate the optimisation problem, we define two
sets of decision variables, for each transmitteri ∈ T and
time t = 1, . . . ,D; processing-time variables:

xi(t) =

{

1, if transmitteri is active at timet

0, otherwise
(4)

and power level variables:pi(t) ∈ R+.
Since the problem involves both integer and continuous

decision variables, the mathematical formulation is
classified as a Mixed Integer Program (MIP) and is given
in Model 1.

Model 1 Minimum number of time slots

minimise
x,p

τ = max
i∈T

D

∑
t=1

txi(t) (5a)

subject to

D

∑
t=0

xi(t) ≥ 1 ∀ i ∈T , (5b)

xi(t) = 0⇒ pi(t) = 0 ∀ i ∈T , t = 1, . . . ,D, (5c)

xi(t) = 1⇒ gii pi(t) ≥ γi

(

∑
j∈T , j 6=i

g ji p j(t)+νi

)

(5d)

∀ i ∈T , t = 1, . . . ,D,

xi(t) ∈ {0,1} ∀ i ∈ T , t = 1, . . . ,D, (5e)

pi(t) ∈R+ ∀ i ∈T , t = 1, . . . ,D. (5f)

Objective (5a) minimises the number of time slots
needed to schedule all the transmitters in the network.
For every transmitteri ∈ T , ∑D

t=1 txi(t) is equal to the
scheduling time, since only one ofxi(1),xi(2), . . . ,xi(D)
will be equal to 1. We define asτ the latest scheduling
time for a transmission. We can linearise the objective
by requiring τ to be larger than or equal to all of the
pairs’ scheduling time, i.e.,τ ≥ ∑D

t=1 txi(t) for all i ∈ T .
Constraint (5b) ensures that each link in the network is
processed at least once in the schedule. Note that there is
always an optimal schedule in which each link is processed
only once. Constraint (5c) makes sure that if a pair is not
processed at a specific time slot, then the power level of
the corresponding transmitter is 0 at that time slot. The
QoS conditions are guaranteed by constraint (5d). The
constraint only affects the optimisation ifxi(t) takes the
value 1. Finally, the last two constraints (5e) and (5f) define
the admissible values for the decision variables.

4. PRELIMINARIES

Inequality (3) depicts the QoS requirement of a
communication pairi while transmission takes place. After
manipulation it becomes equivalent to the following

pi ≥ γi

(

∑
j 6=i, j∈T

g ji

gii
p j +

νi

gii

)

. (6)

In matrix form, for a network consisting ofn communica-
tion pairs, this can be written as

p� ΓGp+ηηη (7)

where Γ = diag(γi), p =
(

p1 p2 . . . pn
)T

, ηi =
γiνi
gii

and

Gi j =

{

0 , if i = j,
g ji

gii
, if i 6= j.

Let

C = ΓG , (8)

so that (7) can be written as

(I−C)p� ηηη (9)

Matrix C has strictly positive off-diagonal elements
which implies that it is irreducible, since we are not
considering totally isolated groups of links that do not
interact with each other. By the Perron-Frobenius theorem
[39], we have that the spectral radius of the matrixC is
a simple eigenvalue, while the corresponding eigenvector
is positive component-wise. A necessary and sufficient
condition for the existence of a nonnegative solution to
inequality (9) for every positive vectorηηη is that(I−C)−1

exists and is nonnegative. However,(I−C)−1 � 0 if and
only if ρ(C) < 1 [39] (where ρ(C) denotes the spectral
radius ofC), or, equivalently,(C− I) is Hurwitz (since
(C− I) is Metzler), see [40].

Therefore, the necessary and sufficient condition for
(7) to have a positive solutionp∗ for a positive vectorηηη
(i.e., there exists a set of powers such that all the senders
can transmit simultaneously and still meet their QoS
requirements (minimum SINR for successful reception) is
that the Perron-Frobenius eigenvalue of the matrixC is less
than 1.

5. COMPUTATIONAL COMPLEXITY

Theorem 1
Problem (5) is NP-hard.

Proof
The statement of Theorem1 is equivalent to saying:
deciding whether the optimal value of (5) does not exceed a
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given valueκ ∈N is NP-hard. We construct a polynomial-
time reduction of the Graph Colouring problem, which is
well known to be NP-hard [41]. Given an undirected graph
G = (V,E) with nodesV = {1, . . . ,n} and edges

E ⊆ {{i, j} : i, j ∈V, i 6= j} ,

as well as a scalark∈N, the Graph colouring problem asks
whether there is an assignmentf : V 7→ {1, . . . ,k} of nodes
to k colours such thatf (i) 6= f ( j) for all {i, j} ∈ E, that
is, neighbouring nodes must have different colours. Our
reduction takes as input a Graph colouring instance and
generates an instance of (5) such that the optimal value of
problem (5) does not exceedκ = k if and only if the answer
to the Graph colouring problem is affirmative. Towards this
end, we setT :=V , D := |V |= n, L :=E, γ =(1, . . . ,1)⊤,
νi = 0 ∀ i ∈R and

gi j :=











1 if {i, j} ∈ E,

1/2 if i = j,

1/(2n) otherwise.

The size of this reduction is polynomial in the size of
the Graph colouring instance. Hence, if we show that the
optimal value of (5) does not exceedκ if and only if
the answer to the Graph colouring instance is affirmative,
we have proven that the solution of (5) is NP-hard. We
proceed in two steps. Firstly, we show that if there is a
Graph Colouring that usesζ colours, then the optimal
value of (5) is smaller or equal toζ . Secondly, we show
that if there is a feasible solution for (5) of value ζ ,
then we can construct an admissibleζ -colouring for the
Graph Colouring instance. The assertion follows from
the combination of both arguments and the fact that we
consider a minimisation objective.

As for the first step, assume that there exists a colouring
f : V 7→ {1, . . . ,ζ}. Given this colouring, we construct a
feasible solution(x, p) of objective valueζ . Towards this
end, we setxi(t) := 1 if f (i) = t andxi(t) := 0 otherwise,
∀ i ∈ T . Likewise, setpi(t) := p̂i ( p̂i ∈ R+) if f (i) = t
and pi(t) := 0 otherwise, for alli ∈ T and t = 1, . . . ,D.
By construction, constraints (5b), (5c), (5e) and (5f) are
satisfied, for any value ˆpi, p̂i ∈ R+. For i ∈ T and t ∈
{1, . . . ,D} with xi(t) = 1, constraint (5d) requires that

pi(t)≥

(

2 ∑
{i, j}∈E

p j(t)

)

+
1
n ∑

j∈V, j 6=i,
{i, j}/∈E

p j(t).

Since f constitutes a valid colouring, the first term on the
right hand-side must evaluate to zero, because otherwise,
the spectral radiusρ of the matrix that is constituted by
{i, j} ∈ E is greater than 1 and hence the network would
be infeasible, as described in Section4. On the other hand,
when the first term of the right hand-side is zero, the
second term fulfills the inequality, since

∑
j∈V, j 6=i,
{i, j}/∈E

1
n
< 1⇒ ‖C‖∞ < 1,

and hence, ρ(C) < 1, where C consists of
i, j ∈V, j 6= i, {i, j} /∈ E. We conclude that constraint
(5d) is also satisfied by our choice ofx and p ∈ R+.
Note that the objective function (5a) evaluates toζ for the
constructed solution(x, p), which implies that the optimal
value of (5) must be smaller or equal toζ .

In the second step, we use a feasible solution to (5)
with objective valueζ to construct a valid colouring of the
graphG with at mostζ colours. Assume that we have a
feasible solution(x, p) for problem (5) with objective value
ζ . Since we consider a minimisation problem, without loss
of generality we can assume that∑D

t=1 xi(t) = 1. Hence,
we obtain a function if we setf (i) := t if and only if
xi(t) = 1. Furthermore, since the objective value (5a) of
(x, p) is ζ , the range off is limited to{1, . . . ,ζ}. We now
show thatf constitutes a valid colouring of graphG, that
is, f (i) 6= f ( j) for all {i, j} ∈ E. Assume to the contrary
that there is

{

î, ĵ
}

∈ E with f (î) = f ( ĵ) = t̂. In this case,
(x, p) must satisfy the constraints

pî(t̂)≥ 2 ∑
{î, j}∈E

p j(t̂)+
1
n ∑

j∈V, j 6=î
{î, j}/∈E

p j(t̂)≥ 2p ĵ(t̂)

and

p ĵ(t̂)≥ 2 ∑
{ ĵ,i}∈E

pi(t̂)+
1
n ∑

i∈V, ĵ 6=i
{ ĵ,i}/∈E

pi(t̂)≥ 2pî(t̂),

which contradicts the assumption that(x, p) is feasible for
problem (5). We conclude that the constructed functionf
indeed constitutes a validζ -colouring of the graphG. As a
result, problem (5) is NP-hard.

6. SOLUTION APPROACHES

In this section, we propose solution approaches for the
wireless scheduling problem with power control (Model
1). In particular, we firstly describe lower (LB) and
upper bounding (UB) techniques. In addition, we describe
solution methodologies designed to converge to the
optimal solution for the cases when the optimality gap
using the bounds is not closed. As aforementioned, these
algorithms make use of the derived bounds, thus enhancing
their performance in terms of computational efficiency.

6.1. Lower and Upper bounds

6.1.1. Lower Bounds
Algorithm 1 presents a lower bounding technique that is

based on a sorting process whose metric is the number of
nodes that each node cannot be simultaneously processed
with. The algorithm begins with setting valuesεi j equal to
1 if nodesi and j cannot be simultaneously processed, 0
otherwise. We can check if two nodes can be processed
simultaneously by isolating them as a network and by
checking its spectral radius. We construct setCL = N
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and sort it in decreasing order according to∑
j∈T

εi j,

i.e. the number of the nodes which nodei cannot be
simultaneously processed with. The first member of set
CL is deemed as the first slot leader. Then, each node
in position 2 onwards is checked with all the nodes in
previous positions. If a nodecan be simultaneously present
in the same time slot with any one of the checked nodes,
then the node is removed from setCL. Otherwise, it
becomes a slot leader. The number of slot leaders at the
end of this operation is the obtained lower boundLB. Note
that due to the fact that we check if two nodes can be
in the same slot in each case, and not the whole set of
nodes assigned to the specific slot, this scheme will allow
more nodes in the slot than it would otherwise admit (the
final selection is therefore not necessarily feasible), and
hence less slots will be required in total. That is why this
methodology constitutes a lower bounding technique.

Algorithm 1 Lower bounding techniqueLB

initialise

Setεi j←

{

1, if ρ([0,ci j;c ji,0])> 1

0, otherwise
∀i, j∈T and set

CLi = i. ResortCL in decreasing order of∑
j∈T

εi j.

Setk← 2.

while k ≤ |CL| do
i←CLk.
for m = 1 tok−1 do

j←CLm.
if ρ([0,ci j;c ji,0])< 1 then

Removei fromCL.
k← k−1
Exit FOR loop.

end if
end for
k← k+1

end while
SetLB← |CL|.
return LB

We also present a variation of the lower boundLB,
referred to asLB′, which includes two additional steps
to Algorithm 1. The first addition to the algorithm is
performed at the end of each iteration of the WHILE
loop. In particular, we update valuesεi j for i, j ∈ CL and
consequently update and resort setCL. The final addition
is a checking process which may increase the lower bound
by 1. To explain this, Algorithm1 implicitly assumes that
a number of nodes can be simultaneously executed in
the same time slot if they at least can be simultaneously
executed with the so-called slot leader. In polynomial time,
we can check whether the nodes implicitly assumed to
be executed with thefinal slot leader cannot be pairwise
simultaneously executed. If we can find such “infeasible”
pairs, thenLB′ is equal toLB + 1. To clarify this, we

note that the members of the infeasible pair cannot be
both present in the final slot. Furthermore, neither of the
members can be scheduled at any previous time slots
(by construction of the lower bound). Hence, one of the
members of the pair must be scheduled in a new time slot.

6.1.2. Upper Bound
In the literature, upper bounding techniques are

described as approximation scheduling methods (see for
example [32,33, 35] and references therein). We describe
two non-trivial upper bound methods that, when combined
with strong lower bounding techniques, are capable of
closing the optimality gap, hence finding the optimal
solution efficiently. We first describe a simple yet effective
heuristic, based on a priority scheduling policy. The
derived solution value, referred to asUB, serves also as
a cut-off value in the B&B approach described in the next
subsection. The basic idea of the policy is to keep adding
new transmissions at the current time slot according to
a priority criterion, until no more transmissions can be
scheduled without violating the SINR constraints. In such
a case, the next time-slot is considered, and the process
is repeated for all the remaining unscheduled transmission
pairs. Note that for each node considered for a time slot, the
spectral radius of the matrix that constitutes the network is
calculated, which takes timeO(n3). In our algorithm, the
priority value of pairi ∈T is found using

Ri =
νiγi

gii
, (10)

which effectively represents the power that transmitter
i produces in a time slot when it is the only active
transmitter. The complete heuristic algorithm is described
in Algorithm 2 below. Note that setA (in the description
below) contains all transmission pairs in decreasing order
of their priorities.

Algorithm 2 Upper bounding technique

initialise
S = /0
A = {i1, . . . , i|T ||ik ∈ T ,∀k ≤ |T |,Rik1

≥
Rik2

if k1 ≤ k2}
UB← 0

while S 6= A do
set = /0
for j ∈ A do

if j∪ set satisfies SINR constraintsthen
set← set ∪{ j}
A← A\{ j}
S← S∪{ j}

end if
end for
UB←UB+1

end while

return UB

6 Trans. Emerging Tel. Tech. 2012; 00:1–13 c© 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/ett

Prepared using ettauth.cls



T. Charalambous et al. On the Minimum Latency Transmission Scheduling in Wireless Networks

Note that, in this case, since not the optimal set of
pairs is chosen to be admitted in each slot, the allocation
of the pairs will be suboptimal and the number of slots
required will be an upper bound for the minimum number
of slots. For constant noise, the priority value is equivalent
to the sorting in [32] of the links by nondecreasing order
of length. However, apart from taking into account that
thermal noise could differ at the receivers, our approach
calculates the spectral radius of the matrix each time a
node is admitted in a network, thus allowing for variable
power; hence, it is less conservative than theaffectedness
andaffectance used in [32] and [33], respectively, since it
is essentially a metric larger than‖C‖∞, which is already
conservative [42].

While UB produces very good upper bounds, we
propose an additional upper bounding algorithm, called
UB′ and described in Algorithm3, that in some instances
(but not all) outperformsUB. This approach chooses
the order by which the nodes enter a network by the
interference they experience. The algorithm is as follows.
The first step of the algorithm is to calculate the sum
of each row and column in matrixC as given by (8).
The sum of each column represents the interference
caused by the particular node while the sum of each row
represents the interferenceexperienced by the particular
node. The algorithm chooses the node with maximum
caused interference and places it in a time slot. The
algorithm then checks the remaining nodes in decreasing
order of the interference experienced. If a node is feasible
with the members in a time slot, then it is included in the
same set. Otherwise, it is placed in a new time slot.

Algorithm 3 Upper bounding technique

initialise
Setsumrowsi ← ∑

j∈T

c ji and sumcolsi ← ∑
j∈T

ci j. Find

icol ∈T such thatsumcolsicol is maximum.
Setk← 1 andSk← {icol}. UpdateT ←T \{icol}.

while T 6= /0 do
Find irow ∈T such thatsumrowsirow is maximum.
for m = 1 tok do

if irow∪Sm satisfies SINR constraintsthen
Sm← Sm ∪{irow}
Exit FOR loop.

end if
end for
if irow could not be placed in any of the setsS then

k← k+1, Sk←{irow}
end if
T ←T \{irow}

end while

SetUB← k.
return UB

We also present a variant of the upper bounding
technique given in Algorithm3 which includes an
additional step. In particular, we add a resorting process at
the end of each iteration of the WHILE loop. The process
finds the minimum total power emitted by the nodes in
each setS such that the SINR constraints are satisfied. The
sets are then resorted in increasing order of the total power.
The idea is to add more members to the sets with lower
power levels first. The resulting upper bound is referred to
asUB′′. Our upper bounding techniques are compared is
Section7 with ApproxLogN algorithm proposed in [32],
which is considered the current state-of-the-art.

6.1.3. Column Generation method
We also describe a column generation technique, based

on an alternative formulation of the original problem,
which is capable of providing both a lower bound and
an upper bound. It is important to note that the main
contribution of the method is the fact that it obtains
stronger lower bounds. The new formulation uses an
explicit representation offeasible sets of transmission
pairs. A set of transmission pairss ⊆ T is said to be
feasible if the simultaneous execution of all the pairs in
the set does not violate the SINR constraints (5d).

The new set covering formulation, given in Model
2 incorporates the complete set of feasible sets of
transmission pairs,S. A binary decision variable is
associated to each feasible sequences ∈ S, defined as

ϑs =

{

1, if set s is used in the optimal solution;

0, otherwise.

Model 2 Set covering formulation

minimise ∑
s∈S

ϑs (11a)

subject to

∑
s∈S:i∈s

ϑs ≥ 1 ∀i ∈T (11b)

ϑs ∈ {0,1} ∀s ∈ S (11c)

The objective is to minimise the number of sets that are
required in the optimal solution. Constraints (11b) ensure
that the solution includes at least one set for each pair
i ∈ T and constraints (11c) define the allowable range of
values for the decision variables.

In order to efficiently manage the complexity of the
exponential number of variables, we solve the continuous
relaxation of Model2 (master problem) via a column
generation scheme. The master problem is given by
equations (11a), (11b) and 06 ϑs 6 1 ∀s ∈ S. The optimal
solution is given asLBcg, a valid lower bound to Model1.

The master problem is initially solved usingS′ ⊆ S, an
initial subset of setS, and the dual valuesπ∗i , associated
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to constraints (11b), are found. New variables (sequences)
are generated one-by-one by finding setss∗ ⊆ S such that
the dual constraint

∑
i∈s∗

π∗i 6 1 (12)

is violated, i.e. such that

∑
i∈I:i∈s∗

π∗i > 1+ ε.

Sets∗ is found by solving Model3, the sub-problem, which
finds a feasible set of transmission pairs of maximum
violation. For the mathematical formulation, we define
binary decision variables:

ζi =

{

1, if pair i ∈T is present in the sets∗

0, otherwise

and decision variablesµi ∈ R
+, the power level of pair

i ∈T .

Model 3 Sub-problem

maximize ∑
i∈T

π∗i ζi (13a)

subject to

ζi = 0⇒ µi = 0 ∀i ∈T (13b)

ζi = 1⇒ giiµi ≥ γi( ∑
j∈T , j 6=i

g jiµ j +νi) ∀i ∈T (13c)

ζi ∈ {0,1} ∀i ∈T (13d)

µi ∈R
+ ∀i ∈T (13e)

The objective function (13a) aims at finding the maximum
violation associated to a feasible set of transmission pairs.
Constraints (13b) and (13c) ensure that if a transmission
pair is not present in the set, then its associated power level
is zero and for all pairs in the set, the SINR conditions are
satisfied, respectively. Finally, constraints (13d) and (13e)
define the allowable values for the decision variables.

The master problem and sub-problem are solved
repeatedly until no more sequences violating constraint
(12) can be found. Significant improvements in terms
of the speed of the column generation methodology
are achieved by constructing and inserting a population
of feasible sequences before the column generation
is invoked. The population includes all the sequences
which include up to two pairs, found using complete
enumeration. We also include a subset of the sequences
with at least three pairs, constructed using the heuristic
approach described in Section6.1.2.

Note that, by the end of the column generation approach
a fractional value for the master problem may be found. In
such a case, the value can be rounded up to the nearest
integer, thus guaranteeing feasibility of the solution.

Finally, at the end of the column generation approach,
a number of feasible sets of transmission pairs is found,

including the ones which were enumerated prior to the
column generation as well as the ones found using the sub-
problem (Model3). Let S̄ be the collection of all these sets.
If we solve Model2 by substitutingS with S̄ ⊆ S, then the
solution value found will be an upper bound to the original
problem. This upper bound is denoted byUBcg.

6.1.4. Branch & Bound Approach
For the purposes of this paper, we implement B&B

approaches, which at the initialization stage set their lower
bound as the maximum of lower boundsLB and LB′

and the upper bound (cut-off value) as the minimum of
upper boundsUB, UB′ and UB′′. It is possible also to
add feasible cuts, i.e. constraints which aim to exclude
any solutions which we are certain to be non-optimal. For
example, we may add constraints which force infeasibility
on the solutions found with our upper bound techniques.
As a result, the B&B algorithm will try to find the best
solution not equal to the latter solutions, and if it cannot,
then the excluded solutions were optimal. We classify such
cuts as “pairwise” and “all”, denoting feasibility cuts that
disallow the simultaneous execution of pairs of nodes and
of a number of nodes greater or equal to 2, respectively.
For “pairwise” cuts, we can find the pairs using complete
enumeration (as we did in Section6.1.1). For “all” feasible
cuts, we include the “pairwise” cuts as well as the sets
of solutions derived from the upper bounding techniques.
These are not strictly speaking “infeasible”, but we do not
lose optimality by excluding them from the search since
their solution value has been noted via the “cut-off” value.
We refer to the B&B approachesBBpaircuts and BBcuts,
as the B&B algorithms incorporating “pairwise” and “all”
cuts, respectively. For benchmarking purposes, we also use
another B&B approach, referred to as BB, which is generic
as it only implements CPLEX’s default settings (no bounds
are incorporated).

7. PERFORMANCE EVALUATION

All the algorithms as well as the lower and upper bounding
techniques described, have been implemented in Microsoft
Visual Studio 2005 C++ using CPLEX v12.1 and run on an
Intel Core 2 computer, with 2.5GHz processor and 3.5GB
of RAM.

Throughout the paper, we setγi = 3 and νi = 0.04
mWatts. For each example, the selected number of nodes
is uniformly and independently distributed on a square of
side 100m, making sure that no two nodes have distance
between them less than 1m. The links are constructed
with a neighbor algorithm, i.e., each transmitting node
will choose a neighboring node as its receiver. Then, the
channel gainsg ji are obtained by considering distance
attenuation only, i.e.,g ji = (d0/d)α , whered0 = 1m and
α = 4.

The algorithm begins with the computation of a lower
bound (LB) and an upper bound (UB) according to the
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techniques described in Section6.1.1and the techniques
described in6.1.2, respectively. It is evident that ifLB
has the same value asUB, any optimisation technique
is redundant; the heuristic solution would be optimal for
the transmission scheduling problem. For the networks
for which the calculated upper and lower bounds have
different values (e.g., if upper bound= 5 and lower bound=
3) we use optimisation techniques in order to close the gap
and hence, obtain the optimal solution. At this stage, the
initial pairwise cuts are found and added to the problem.

After determining the bounds, if the optimal solution
is not found, we use Branch & Bound (B&B) which
utilises the calculated bounds in order to derive the optimal
solution faster. The apparent gain from determining as tight
bounds as possible is the decrease in CPU time required
by the B&B technique. Apart from the optimisation
techniques, a column generation (CG) optimisation
approach was designed in order to find stronger bounds for
the transmission scheduling problem. The performance of
CG was then compared with the other methods.

The performance of our algorithms was evaluated for
60 different networks of six different sizes: 10, 20, 30, 40,
50 and 60 pairs of nodes. For each size we investigated
10 different networks. The performance of the algorithms
is evaluated on three aspects: (a) the algorithms’ speed,
(b) their scalability, and (c) their success at finding an
optimal solution. Most bounding algorithms considered in
the literature, consider only upper bounding techniques
and therefore, a fair comparison can be done only for the
upper bounding methods proposed.

Figure 1 corresponds to the computational time for
the LB and UB techniques for the networks considered
of different sizes. The figure demonstrates that the
computation time for both the lower and upper bounds
is low for small networks and also it scales linearly with
the number of communication pairs considered in the
network. As a result, the algorithms succeed in having a
low computational cost and good scalability properties.

In Figure 2 we compare the upper and lower bounds
with the optimal value for each network considered, in
order to get insight as to whether the non-trivial bounds
designed perform well against the optimal values. For the
figure, we can easily observe that for small networks the
bounding algorithms provide bounds which converge to
the optimal value fast and with high probability, whereas
for larger networks the bounds are not tight, but seem to
remain close to the optimal value.

In Figure 3 it can be deduced that the UB algorithm
produces slightly better results than the LB, since it
matches the optimal solution more often than the LB
algorithm but they both remain close to the optimal value
as the number of communication pairs increases. Our UB
algorithm also outperformsApproxLogN [32].

For the networks for which the Bounds algorithms
(Sections6.1.1and6.1.2) did not converge to the optimal
value we have used optimisation algorithms. From a total
of 60 networks, the Bounds algorithms (sections6.1.1and
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Figure 1. Average CPU times for the UB and LB algorithms. It is
easy to see that the computational complexity of the algorithms
scales linearly with the number of communication pairs in the

network.
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Figure 2. LB, UB and optimal values for all networks
considered. The networks from left to right are put in order such
that each of the first 10 networks consists of 10 communications
pairs. Then, every 10 networks the number of communication

pairs increases by 10.

6.1.2) did not converge to the optimal value for 35 of them.
It is remarkable to note that the lower bound, which was
always the weakest bound, has comparable results to the
upper bound; that illustrates that the derived non-trivial
lower bound is tighter than existing results.

As shown in TableI, the computational cost for both
lower and upper bounds is very small. When these
bounds are incorporated into the B&B algorithm we
have significant improvements in the performance of the
algorithms and this will be shown next in Section7.1.
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Table I. Average calculation time and total calculation time vs optimality

Average Average Average normalised
calculation calculation maximum calculation Optimality Optimality

Number of time for LB time for UB time for LB for UB Optimality

Nodes (sec) (sec) [max(tLB,tUB)
N ] (%) (%) (%)

10 0 0.0733 0.0073 80 100 80
20 0.0016 0.1357 0.0068 40 90 30
30 0.0032 0.2329 0.0078 60 60 40
40 0.0063 0.3388 0.0085 80 60 40
50 0.0063 0.5422 0.0108 70 50 40
60 0.0095 0.5813 0.0097 20 70 10
Averages: 0.0068 0.317 0.007 58.33 71.67 40.00
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Figure 3. Average distance of bounds from the optimal value for
networks of size 10, 20, 30 40, 50 and 60 communication pairs.

7.1. Evaluation of the CG and B&B techniques

For the 35 networks whose optimal solutions were not
found using the bounds, the CG method converged for 9
networks (25.7%). Figure4 compares the performance (in
CPU time) of the CG and B&B approaches for these 9
networks.
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Figure 4. Performance of CG with respect to the B&B algorithms
for the 9 networks that CG converged.

We can conclude that although CG is designed as a
lower bounding approach, in fact, all B&B variations are
faster. The only exception are two networks, where CG
performs slightly better than most of the B&B algorithms,
except from theBBpaircuts. Given CG’s low optimality
performance and its underperformance time-wise, we
can infer that the scenarios where CG would be more
appropriate than B&B cuts or B&B with pairwise cuts
are limited and negligible. Due to CG’s poor performance
we conclude that it is not an attractive approach for the
solution of the scheduling problem.

8. DISCUSSION

In this paper, we studied the MLTS problem when power
control can take place, i.e., the problem of minimising
the number of time-slots required for scheduling all the
wireless nodes in a given network for the abstract physical
model when power control is allowed. The contributions
of this paper are as follows.
(a) We proved that this problem is NP-hard. Contrary to
existing approaches and results, our formulation includes
the choice of optimal transmitting powers and arbitrary
topology. Furthermore, the generality of the abstract
physical model implies the complexity of the geometric
physical model and completes the theory that the minimum
latency transmission scheduling problem with power
control for the physical model in general is NP-hard. [30]
and [35] prove NP-hardness for the geometric physical
model without and with power control, respectively, and
not the abstract physical model. For the abstract physical
model NP-hardness is proven in [36], but for constant
power levels. The NP-hardness proof for the abstract
physical model with power control has been missing (the
open problem posted in [38]). Through our proof the
conditions for which this problem becomes equivalent to
graph colouring problem are presented. This would be
helpful to know in scenarios in which we are asked to
construct the network and hence, we will be able to avoid
conditions that would make the computational complexity
large.
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(b) We have developed non-trivial lower and upper bounds
that can, in many instances, provide the optimal solution
to the problem. In our simulations, it is illustrated that
the upper bound is better in general than the lower bound
and outperforms the current state-of-the art approximation
algorithm (ApproxLogN [32]). The lower bound was
shown to be better than many other approaches (e.g.,
relaxations of optimisation formulations of the problem),
but still remains an open problem.
(c) Even if the bounds do not converge to the
optimal solution, then when incorporated into the MILP
formulation, it provides a considerable improvement in
terms of computational time, as shown in the performance
evaluation. As a result, the combined methodology scales
to problems of nontrivial size. The column generation
approach (also appearing in many optimisation problems)
has poor performance when compared to our problem
specific B&B approach and hence, it is not an attractive
approach for the solution of the scheduling problem. Other
approaches, such as Cutting Plane, have been investigated
(see for example [1]) but they were proved inferior to B&B
approaches.

9. CONCLUSIONS AND FUTURE
DIRECTIONS

The minimum latency transmission scheduling problem in
wireless networks for an intrinsically global model such
as the abstract physical model with power control is NP-
hard; it is thus unlikely to admit a polynomial-time optimal
solution. The NP-hardness of the scheduling problem with
power control for the abstract physical model, due to
its generality, implies the NP-hardness for the geometric
SINR model also. Therefore, the emphasis now is towards
techniques that can provide strong, non-trivial lower and
upper bounds for enhanced computational performance of
analytical methods. To this end, we developed efficient
bounding techniques that find good upper and lower
bounds to the transmission scheduling problem. Further,
we incorporated these bounds into a B&B implementation,
showing that we are able to scale to problems of non-
trivial size. Both the exact and heuristic approaches are
useful in deriving the optimal solution value quickly, as
well as providing feasible solutions of known quality in
case the optimal solution is unknown. The significance of
these results is three-fold. On the one hand, the problem
of transmission scheduling where transmitters are able
to adjust their power levels to fully benefit from spatial
reuse, has been formulated and solved more efficiently
with the aid of effective bounding techniques. On the
other hand, the results are of practical importance in the
presence of a central controller; the controller is able to
make the calculations and disseminate the information to
the rest of the network (for example in cellular networks
where the base station can act as a centralised agent).
Finally, the solution constitutes an important benchmark

when evaluating approximation algorithms or distributed
algorithms for scheduling when knowledge of the whole
network is unavailable.

Current research focuses on finding bounds that
guarantee that the error lies within a maximum distance
from the optimum solution, or, even prove hardness-of-
approximation for an arbitrary gain matrix, i.e., that no
reasonable approximation algorithms can be developed
for this problem. In addition, future work includes the
implementation of the suggested algorithms on a Field-
Programmable Gate Array (FPGA) whose computational
performance will be compared with those coded on
a PC using CPLEX. Furthermore, the development of
approximation algorithms for the transmission scheduling
problem for the abstract physical model is part of on-
going research. Finally, a distributed algorithm poses a
very challenging task and still remains an open problem.
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33. Halldórsson MM, Wattenhofer R. Wireless communi-
cation is in apx.Proceedings of the 36th International
Colloquium on Automata, Languages and Program-
ming: Part I, ICALP ’09, Springer-Verlag: Berlin,
Heidelberg, 2009; 525–536.

34. Fanghänel A, Kesselheim T, Räcke H, Vöcking
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