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Abstract— We have recently proposed a robustified ratio
consensus algorithm which achieves asymptotic convergence to
the global average in a distributed fashion in static strongly
connected digraphs, despite the possible presence of bounded
but otherwise arbitrary delays. In this work, we propose a
protocol which reaches asymptotic convergence to the global
average in a distributed fashion under possible changes in the
underlying interconnection topology (e.g., due to component
mobility), as well as time-varying delays that might affect
transmissions at different times. More specifically, we extend
our previous work to also account for the case where, in
addition to arbitrary but bounded delays, we may have time
varying communication links. The proposed protocol requires
that each component has knowledge of the number of its
outgoing links, perhaps with some bounded delay, and that the
digraphs formed by the switching communication topologies
over a finite time window are jointly strongly connected.

I. INTRODUCTION

Convergence of consensus algorithms can usually be es-
tablished under relatively weak requirements. Typical appli-
cations involve motion of mobile agents (e.g., coordination of
unmanned air vehicles, autonomous underwater vehicles, or
satellites) and averaging of measurements in wireless sensor
networks. Common challenges include the handling of node
failures (e.g., due to the draining of batteries in wireless
sensor networks), inhomogeneous transmission delays on the
transfer of data between agents, packet losses in wireless
communication networks, and inaccurate sensor measure-
ments. As a result, it is imperative to address agreement prob-
lems that consider networks of dynamical agents, possibly
with directed information flow, under changing topologies
with/without delays.

One of the most well known consensus problems is
the so-called average consensus problem in which agents
aim to reach the average of their initial values (see, for
example, [1]). It has been shown in [2] that, under a fixed
interconnection topology, average consensus can be achieved
by performing a linear iteration in a distributed fashion
if the interconnection topology is both strongly connected
and balanced. Even though various approaches have been
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proposed for forming a balanced matrix (e.g., [3]) and a
primitive doubly stochastic matrix (e.g., [4]), which can
subsequently be used for reaching average consensus, most
existing schemes are not applicable in directed graphs and/or
fail in the presence of changing interconnection topology
and time-delays. In particular, among the limited existing
algorithms that guarantee convergence to the exact aver-
age in a directed graph (e.g., [5], [6]), few of them have
addressed delays and topology changes. More recently, [7]
has proposed an approach that can reach asymptotic average
consensus under switching topologies, but it is unclear how/if
their techniques can be modified to consider the case where
delays are also present.

In this paper, we investigate the problem of discrete-time
average consensus in a multi-component system under a di-
rected interconnection topology in the presence of changing
interconnections (due to communication links being added or
removed, as in a mobile network setting) and bounded delays
in the communication links. We consider a fixed topology
and we devise a protocol, based on ratio consensus [8] and
robustified ratio consensus [9], where each node updates
its information state by combining the available (possibly
delayed) information received by its neighbors using constant
positive weights. We establish that, unlike other consensus
approaches, this new version of ratio consensus converges
to the exact average of the initial values of the nodes, even
in the presence of arbitrary changes in the communication
links and bounded time-delays.

The remainder of the paper is organized as follows.
In Section II, the notation used throughout the paper is
provided, along with some background on graph theory that
is needed for our subsequent development. This section also
outlines our model for changing interconnection topology in
the multi-agent system. In Section III we consider a fixed
set of nodes and allow changes in the communication links
among them, in order to study the behavior of our algorithm
in the presence of both interconnection topology changes and
delays. Finally, Section IV summarizes the results.

II. NOTATION AND PRELIMINARIES
A. Notation

The sets of real, integer and natural numbers are denoted
by R, Z and N, respectively; their nonnegative counterparts
are denoted by the subscript + (e.g.R+). Vectors are denoted
by small letters whereas matrices are denoted by capital
letters. The transpose of matrix A is denoted by AT . By 1
we denote the all-ones vector and by I we denote the identity
matrix (of appropriate dimensions). A matrix whose elements



are nonnegative, called nonnegative matrix, is denoted by
A ≥ 0 and a matrix whose elements are positive, called
positive matrix, is denoted by A > 0.

In multi-component systems with fixed communication
links (edges), the exchange of information between compo-
nents (nodes) can be conveniently captured by a directed
graph (or digraph) G(V, E) of order n (n ≥ 2), where
V = {v1, v2, . . . , vn} is the set of nodes and E ⊆ V × V
is the set of edges. A directed edge from node vi to node
vj is denoted by εji , (vj , vi) ∈ E and represents a com-
munication link that allows node vj to receive information
from node vi. A graph is said to be undirected if and only
if εji ∈ E implies εij ∈ E . In this paper, links are not
required to be bidirectional, i.e. we deal with directed graphs;
for this reason, we use the terms “graph" and “digraph"
interchangeably. Note that by convention and for notational
purposes, we assume that the given graph does not include
any self-loops (i.e., εjj /∈ E for all vj ∈ V) although each
node vj obviously has a link (access) to its own information.
A directed graph is called strongly connected if there exists
a path from each vertex vi in the graph to every other vertex
vj . In other words, for any vj , vi ∈ V , vj 6= vi, one can find
a sequence of nodes vi = vl1 , vl2 , vl3 , . . ., vlt = vj such
that link (vlk+1

, vlk) ∈ E for all k = 1, 2, . . . , t− 1.
All nodes that can transmit information to node vj directly

are said to be in-neighbors of node vj and belong to the set
N−j = {vi ∈ V | εji ∈ E}. The cardinality of N−j , is called
the in-degree of vj and is denoted by D−j =

∣∣N−j ∣∣. The
nodes that receive information from node vj belong to the
set of out-neighbors of node vj , denoted by N+

j = {vl ∈
V | εlj ∈ E}. The cardinality of N+

j , is called the out-degree
of vj and is denoted by D+

j =
∣∣N+

j

∣∣.
In the type of algorithms we will consider, we will

associate a positive weight pji for each edge εji ∈ E ∪
{(vj , vj) | vj ∈ V}. The nonnegative matrix P = [pji] ∈
Rn×n+ (with pji as the entry at its jth row, ith column
position) is a weighted adjacency matrix (also referred to as
weight matrix) that has zero entries at locations that do not
correspond to directed edges (or self-edges) in the graph. In
other words, apart from the main diagonal, the zero-nonzero
structure of the adjacency matrix P matches exactly the given
set of links in the graph.

We use xj [k] ∈ R to denote the information state of
node j at discrete time k. To capture dynamically changing
topologies we will assume that we are given a fixed set
of components V = {v1, v2, . . . , vn} but the set of edges
among them might change at various points in time. This
results in a sequence of graphs of the form G[k] = (V, E [k])
and means that at each time instant k, each node vj has
possibly different sets of in- and out-neighbors, denoted
respectively by N−j [k] and N+

j [k]. Given a collection of
graphs G[1], . . . ,G[m] (for some m ≥ 1) of the form G[k] =
(V, E [k]), k = 1, 2, . . . ,m, the union graph is defined as
G1,2,...,m = (V,∪mk=1E [k]). The collection of graphs is said
to be jointly strongly connected, if its corresponding union
graph G1,2,...,m forms a strongly connected graph. A strongly

connected graph certainly emerges if at least one of the
graphs in the collection is strongly connected, but it could
also emerge even if none of the graphs forming the union is
strongly connected.

At each time step k, each node vj updates its information
state to xj [k + 1] as a weighted linear combination of its
own value xj [k] and the available information received by
its neighbors {xi[k] | vi ∈ N−j [k]}. Weight pji[k] is positive
if there exists a link at time step k from agent vi to agent vj
and captures the weight of the information inflow; it is zero,
otherwise. In this work, since we deal with directed graphs,
we assume that each node vj chooses its self-weight pjj [k]
and the weights plj [k] on its out-going links at time k, i.e.,
vl ∈ N+

j [k]. Hence, in the general case, each node updates
its information state xj [k+ 1], k = 0, 1, 2, . . ., according to:

xj [k + 1] = pjj [k]xj [k] +
∑
vi∈N−j [k] pji[k]xi[k]

= pjj [k]xj [k] +
∑
vi∈N−j [k] xj←i[k], (1)

where xj←i[k] , pji[k]xi[k], xi[k] ∈ R, is the value
sent to node vj by node vi at time step k. [Note that,
in the setting we consider, node vi chooses the weight
pji[k], thus it is more convenient to sent xj←i[k] instead
of separately sending pji[k] and xi[k].] If we let x[k] =
(x1[k] x2[k] . . . xn[k])T and P [k] =

[
pji[k]

]
∈ Rn×n+ ,

then (1) can be written in matrix form as

x[k + 1] = P [k]x[k]. (2)

Note that, with the exception of the diagonal entries, we
have pji[k] = 0, j 6= i, if and only if (vj , vi) /∈ E [k]. We
say that the nodes asymptotically reach average consensus if
limk→∞ xj [k] =

∑
l xl[0]

n for all vj ∈ V .

B. Ratio Consensus

In [8], an algorithm is suggested that solves the average
consensus problem in a static digraph setting, where each
node vj distributively sets the weights on its self-link and
outgoing-links to be plj = 1

1+D+
j

, ∀(vl, vj) ∈ E , so that
the resulting weight matrix P is column stochastic, but not
necessarily row stochastic. Average consensus is reached by
using this weight matrix to run two iterations with appropri-
ately chosen initial conditions. The algorithm is stated below
for the specific choice of weights mentioned above (which
assumes that each node knows its out-degree).

Lemma 1: [8] Consider a strongly connected graph
G(V, E). Let yj [k] and zj [k] (for all vj ∈ V and k =
0, 1, 2, . . .) be the result of the iterations

yj [k + 1] = pjjyj [k] +
∑

vi∈N−j

pjiyi[k] , (3a)

zj [k + 1] = pjjzj [k] +
∑

vi∈N−j

pjizi[k] , (3b)

where plj = 1
1+D+

j

for vl ∈ N+
j ∪ {vj} (ze-

ros otherwise), and the initial conditions are y[0] =
(y0(1) y0(2) . . . y0(|V|))T ≡ y0 and z[0] = 1. Then, the



solution to the average consensus problem can be asymptot-
ically obtained as

lim
k→∞

µj [k] =

∑
v`∈V y0(`)

|V|
, ∀vj ∈ V ,

where µj [k] = yj [k]/zj [k] .

C. Modeling Switching

As in the case when there is no change in the intercon-
nection topology, each node vj is in charge of setting the
weights plj [k], vl ∈ N+

j [k], on all links to its out-neighbors.
Due to the changing topology, the weight matrix will be time-
varying and will be denoted by P [k]. What is important is
for P [k] to be column stochastic and have nonzero diagonal
elements. As in Lemma 1, nodes can easily set the weights on
the links to their out-neighbors to ensure column stochasticity
as long as each node vj has knowledge of its out-degree
N+
j [k] at each time step (in such case, each node vj ∈ V

sets plj [k] = 1
1+D+

j [k]
for vl ∈ N+

j [k] ∪ {j}). There
are various ways in which the out-degree information can
become available at each node as we describe in more detail
later. In our analysis of changing interconnection topology,
we consider two cases.
(i) Switching without delays: When we have a time-varying
interconnection topology and there exist no delays in the
communication links, each node vj updates its information
state at time step k to xj [k + 1] by combining its own state
xj [k] and the available information received by its neighbors
{xj←i[k] | vi ∈ N−j [k]} (the latter information also includes
the positive weights pji[k] that capture the weight of the
information inflow assigned by component vi to the link
(vj , vi) at time k). Here, we will consider two sub-cases:
(a) each transmitting node knows its out-degree as soon as
the change takes place, and (b) each transmitting node knows
its out-degree with some delay.
(ii) Switching with delays: In this case, each node vj
updates its information state at time step k to xj [k + 1]
by combining its own value xj [k] (i.e., the own value of
a node is always available without delay) and the available
(possibly delayed) information {xi[s]|s ∈ Z, s ≤ k, vi ∈
N−j [s], s + τji[s] = k }. Integer τji[k] ≥ 0 represents the
delay of a message sent from node vi to node vj at time
instant k. We require that 0 ≤ τji[k] ≤ τ̄ji ≤ τ̄ for all k ≥ 0
for some finite τ̄ = max{τ̄ji}, τ̄ ∈ Z+. The possibly delayed
information also includes the positive weights pji[s], that
component vi assigns to link (vj , vi) at time s. We consider
again the cases where each node vj discovers its out-degree
without or with delay, and also consider a third case (c) in
which node vj discovers an established link with some delay.

III. HANDLING CHANGING INTERCONNECTIONS

In this section, we extend [9] to include time-varying
communication links (in addition to bounded delays on each
link). We assume that we have a time-varying graph, in
which the set of nodes is fixed but the communication links
can change, i.e., at time step k the interconnections between
components in the multi-component system are captured by

a directed graph G[k] = (V, E [k]). For the analysis below,
we let Ḡ = {G1,G2, . . . ,Gν}, ν ∈ N, ν ≤ 2n

2−n, be the
set of all possible directed graphs1 defined for a given set of
nodes V .

A. Changing interconnection topology without communica-
tion delays

We start our analysis by considering the simplest case
where we have a changing interconnection topology without
delays and instantaneous knowledge at each node of its out-
degree (at that particular time instant). We start with the
assumptions below (some of these assumptions are relaxed
later on).

Assumptions 1:
(B1) At each time instant k, each node vj knows the number

of nodes receiving its message (i.e., the number of its
out-neighbors D+

j [k]).
(B2) There exist no delays in the delivery of messages.
(B3) Given the infinite sequence of graphs G[1], G[2], . . .,

G[k], . . ., we can find a finite window length l and
an infinite sequence of times t0, t1, . . . , tm, ..., where
t0 = 0, such that for any m ∈ Z+, 0 < tm+1 − tm ≤
` <∞ and the union graph Gtm,...,tm+1−1 (comprising
of graphs G[tm],G[tm+1], . . . ,G[tm+1−1]) is strongly
connected.

Remark 1: Assumption (B1) requires that the transmitting
node knows the number of nodes it transmits messages to
at each time instant. In an undirected graph setting, this is
not too difficult; in a directed graph setting, this is not as
straightforward but there are ways in which knowledge of the
out-degree might be possible. For example, there can be an
acknowledgement signal (ACK) via a distress signal (special
tone in a control slot or some separate control channel)
sent at higher power than normal so that it is received by
transmitters in its vicinity [10]. Knowledge of the out-degree
is also possible if the nodes periodically perform checks to
determine the number of their out-neighbors (e.g., by peri-
odically transmitting the distress signals mentioned above).
As we discuss later, at the cost of additional complexity, the
nodes can also handle situations where they learn their out-
degree with some delay. Assumption (B2) is made to keep
things simple and it is relaxed later. Assumption (B3) stems
from the fact that we require that there exists paths between
any pair of nodes infinitely often.

In its general form, each node updates its information state
according to the following relation:

xj [k + 1] = pjj [k]xj [k] +
∑

vi∈N−j [k]

xj←i[k] , (4)

where k = 0, 1, . . ., xj←i[k] , pji[k]xi[k] is the information
sent from node vi to node vj at time step k, and xj [0] ∈ R
is the initial state of node vj . Since the out-degree is known,

1Each of the n nodes may be connected (have an out-going link) with up
to (n− 1) other nodes. As a result, we have n(n− 1) possible links, each
of which can be either present or not. Hence, we have 2n(n−1) possible
graph combinations. Of course, depending on the underlying application,
some of these interconnection topologies may be unrealizable.



the transmitting node vj can easily set the (positive) weights
to plj [k] = 1

1+D+
j [k]

for l = j and (vl, vj) ∈ E [k] (this

choice satisfies
∑n
l=1 plj [k] = 1 for all vj ∈ V). Note that

unspecified weights in P [k] are set to zero and correspond
to pairs of nodes (vl, vj) that are not connected at time step
k, i.e., plj [k] = 0, for all (vl, vj) /∈ E , j 6= i. If we let x[k] =
(x1[k] x2[k] . . . xn[k])T and P [k] = [pji[k]] ∈ Rn×n+ then
(1) can be written in matrix form as x[k + 1] = P [k]x[k],
where x[0] = (x1[0] x2[0] . . . xn[0])T ≡ xT0 .

Remark 2: Communication links can be initi-
ated/terminated throughout the operation of the algorithm,
from either (a) the receiving or (b) the transmitting node.
Possible communication protocols to perform these tasks
are described briefly below:
(a) When node vl wants to receive messages from node vj
(e.g., because it is in the neighborhood of vj), it can send
a distress signal to pass this request to vj (alternatively,
node vl can send the message to node vj using some
path in the directed graph or using some sort of flooding
scheme). When node vj receives the request from vl, it
sends an acknowledgement packet (directly to node vl)
and the communication link is initiated. In practice, this
might not necessarily require node vj to transmit a separate
package to node vl (e.g., in a wireless broadcast setting) or
to transmit at a higher power (e.g., if vl is already in its
range); however, it does imply that node vj will adjust its
self-weight and the weights plj , vl ∈ N+

j , on the links to its
out-neighbors in order to ensure that column stochasticity
is preserved. If, on the other hand, node vl wants to
terminate the communication link, it sends (or broadcasts if
the message cannot be specifically directed to node vj) a
distress signal destined for node vj (alternatively, it can use
a flooding-like strategy via the paths in the directed graph);
as soon as node vl receives an acknowledgement from node
vj along with the latest message with values for the last
update, then the link can be terminated. If node vl does not
receive the acknowledgement message from node vj , the
link remains active.
(b) Note that if the transmitting node vj wants to terminate
a communication link to node vl, it is enough to simply
initiate such a request to node vl (a direct link is available).

Lemma 2: Consider an infinite sequence of graphs of the
form G[k] = (V, E [k])), k = 0, 1, 2, ... such that there exists a
finite time window length ` and an infinite sequence of time
instants t0, t1, . . . , tm, . . ., where t0 = 0, such that for any
m ∈ Z+, 0 < tm+1− tm ≤ ` <∞, and the union of graphs
G[tm],G[tm+1], . . . ,G[tm+1−1] is strongly connected. Let
yj [k], ∀vj ∈ V , be the result of iteration (4) with plj [k] =

1
1+D+

j [k]
for vl ∈ N+

j [k]∪{vj} (zeros otherwise) and initial

conditions y[0] = y0, and let zj [k], ∀vj ∈ V , be the result
of iteration (4) with plj [k] = 1

1+D+
j [k]

for vl ∈ N+
j [k] ∪

{vj} (zeros otherwise) and with initial condition z[0] = 1.
Then, the solution to the average consensus problem in the
presence of dynamically changing topologies can be obtained
as limk→∞ µj [k] =

∑
vl∈V

y0(l)

|V| , ∀vj ∈ V , where µj [k] =

yj [k]
zj [k] .

Proof: Let P tm+1−tm , P [tm+1 − 1]P [tm+1 −
2] . . . P [tm]. Since the union of graphs from time instant
tm until tm+1 − 1, i.e., the union of graphs G[tm],G[tm +
1], . . . ,G[tm+1−1] is strongly connected and each matrix in-
volved in the product has strictly positive elements on the di-
agonal, matrix P tm+1−tm is SIA2 for m ∈ Z+. Furthermore,
products of matrices of the form P tm+1−tm are SIA. Hence,
according to Wolfowitz theorem [11], for any ε > 0, there
exists a finite integer ν(ε) ∈ N, such that a finite word W
given by the product of a collection of ν stochastic matrices
of the form P tm+1−tm has all of its columns approximately
the same, i.e., P tk+ν−tk+ν−1

. . . P tk+2−tk+1
P tk+1−tk →

cν+k,k1
T , where cν+k,k is a positive n-dimensional column

vector. The proof continues as in Proposition 1 in [9].

B. Changing interconnection topology with communication
delays

Assumptions 2: When delays are present, we make the
following extra assumption:
(C1) There exists a finite τ̄ that uniformly bounds the delay

terms, i.e. τji[k] ≤ τ ji ≤ τ .
In this case, each node updates its information state accord-
ing to the following iteration:

xj [k + 1] = pjj [k]xj [k]+ (5)
τ̄∑
r=0

∑
vi∈N−j [k−r]

xj←i[k − r]Ik−r,ji[r],

for k = 0, 1, 2, . . ., where

Ik,ji(τ) =

{
1, if τji[k] = τ ,
0, otherwise,

(6)

and xj←i[k− r] , pji[k− r]xi[k− r] is the value sent from
node vi to node vj at time step k − r that suffers delay r,
xj [0] ∈ R is the initial value of node vj , and the values
pji[k] ≥ 0 depend on the topology of the graph at time k.

To handle delays in a network of n = |V| nodes, we
introduce τ̄n nodes (for a total of (τ̄ + 1)n nodes) so that
we can write

x[k + 1] = P [k]x[k] , (7)

where (as in [9])

P [k] ,


P0[k] In×n 0 · · · 0
P1[k] 0 In×n · · · 0

...
...

...
. . .

...
Pτ̄−1[k] 0 0 · · · In×n
Pτ̄ [k] 0 0 · · · 0

 , (8)

with

x[k] =
(
xT [k] x(1)[k] . . . x(τ̄)[k]

)T
,

x(r)[k] =
(
x

(r)
1 [k] . . . x(r)

n [k]
)
, r = 1, 2, . . . τ̄ .

2In [11], a stochastic matrix P is called indecomposable and aperiodic
(SIA) if Q = limk→∞ Pk existts and all the rows of Q are the same.



As in [9], P0[k], P1[k], . . . , Pτ̄ [k] are appropriately defined
column stochastic matrices, such that P [k] =

∑τ̄
r=0 Pr[k],

i.e., the sum P [k] of all the nonnegative matrices Pr[k],
r ∈ {0, 1, 2, . . . , τ̄}, gives the weights of the zero-delay
interconnection topology at time instant k. The difference
from the case when only delays are present in the network
is that the interconnection topology is dynamically changing
and the weights at each time instant might differ. The
proposed protocol is able to asymptotically reach average
consensus, as stated in Lemma 3 below. The proof is similar
to the proof for delays with no changes in the interconnection
topology and is omitted.

Lemma 3: Consider a sequence of graphs of the form
G[k] = (V, E [k])), k = 0, 1, 2, ... such that there exists a
finite time window length ` and an infinite sequence of time
instants t0, t1, . . . , tm, . . ., where t0 = 0, such that for any
m ∈ Z+, 0 < tm+1 − tm ≤ ` < ∞, m ∈ Z+, and
the union of graphs G[tm],G[tm + 1], . . . ,G[tm+1 − 1] is
strongly connected. Let yj [k] for all vj ∈ V be the result of
iteration (5) with plj [k] = 1

1+D+
j [k]

for vl ∈ N+
j [k] ∪ {vj}

(zeros otherwise) and initial conditions y[0] = y0, and
let zj [k], ∀vj ∈ V , be the result of iteration (4) with
plj [k] = 1

1+D+
j [k]

for vl ∈ N+
j [k] ∪ {vj} (zeros otherwise)

and with initial condition z[0] = 1. The indicator function
Ik,ji captures the bounded delay τji[k] on link (vj , vi) at
iteration k (as defined in (6), τji[k] ≤ τ̄ ). Then, the solution
to the average consensus problem can be asymptotically

obtained as lim
k→∞

µj [k] =

∑
vl∈V y0(l)

|V|
, ∀vj ∈ V , where

µj [k] =
yj [k]
zj [k] .

We now discuss the case in which a node, say node vj ,
receives an indication (e.g., an acknowledgement message)
that one of its out-neighbors, say vl ∈ N+

j [k− 1], no longer
receives its transmissions. In other words, node vl /∈ N+

j [k]
but node vj finds out about it with some bounded delay that
we denote by Tlj [k]. Such bounded delays could arise from
communication protocols in a variety of ways, e.g., when
using periodic acknowledgement signals like the distress
signals discussed in Remark 2. Another way for node vj
to discover that its out-degree has changed is by using
acknowledgement signals that arrive at node vj through paths
in the network that connect the out-neighbors of node vj to
node vj (a direct link between an out-neighbor of node vj
and node vj may not necessarily exist in a directed graph).
We use Tlj [k] ≤ T < ∞ to denote the time it takes for
node vj to realize that node vl is no longer in the set
N+
j [k]. The problem that node vj has to address at time

k + Tlj [k] when it realizes that, at time steps k, k + 1, . . . ,
k+Tlj [k]−1, it erroneously assumed an out-degree D+

je that
(supposing no other changes) was greater than the true out-
degree D+

j , is that the weighted message from node vj has
not been conveyed to the out-neighbor vl (because the link
was terminated). The most straightforward way to reconcile
this is to add these values back to node vj . This can be done
easily as long as node vj keeps track of the messages it has
recently transmitted —within the last T steps— to its out-

neighbors. Note, however, that node vj has to track these
messages for each of its perceived out-neighbors, because if
more than one out-neighbors terminate their links with vj
(possibly at different time steps), then node vj must know
what needs to be added back to its own value for each such
former out-neighbor.

A way to model the tracking of the message is that node
vj adds, for each of its perceived out-neighbors, T “virtual”
nodes that loop back to itself. These virtual nodes essentially
keep track of the values that have been sent to each out-
neighbor in the last T steps. The following example discusses
this issue is more detailed. Consider the model for the part
of the network consisting of node vj and its two (D+

j = 2)
out-neighbors vl1 , vl2 as shown in Figure 1(a). Suppose that
the maximum delay required for an acknowledgement signal
from any out-neighbor of node vj is 2 (i.e., T = 2). Suppose
now that out-neighbor vl2 terminates the link vl2 ← vj and
node vj receives an ACK with delay 2. This means that node
vj erroneously considered an out-degree of 2 (instead of 1)
for the last 2 updates. In this model, the message is passed
through the two extra “virtual” nodes (added in a self-loop),
allowing us to loop the weighted message back to node vj
(see Figure 1(b)). Therefore, node vj is able to recover the
lost values (sent to node vl2 ).
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(a) The maximum delay required for
an acknowledgement signal from the
out-neighbors of node vj is 2.
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(b) A model in which node vj di-
rects the weighted messages of the
links that no longer exist as delayed
information to itself.

Fig. 1. The weighted messages from node vj that were not conveyed to
the out-neighbor vl2 (because the link was terminated) are added back to
the value of node vj .

In the general case, in a network of n = V nodes, we
introduce max(τn, Tn) nodes (for a total of (max(τn, Tn)+
n) nodes) and we proceed as in (7).

Remark 3: There are also cases in which the transmitting
node vj may not have knowledge of its out-degree at time
instant k. Such situations can also be handled if, at each time
instant k, node vj (i) knows the number of nodes with which
it has established a communication link in the past and were
not officially terminated, and (ii) is able to multicast a table
of values to each of these out-neighbors. One way to do this
is to employ the communication protocol proposed in [12]
where, at each time instant, each node vj broadcasts its own
state (as updated via the iterations in equation (4)), as well as
the sum of all the values, called the total mass in [12], that
have been broadcasted to each neighboring node vl ∈ N+

j so
far. If, for any reason, some messages are lost (dropped) or
the communication link disappears for some time period, the
total mass will enable the receiving out-neighbor to retrieve



the information of the lost messages, with some time delay.
Thus, even though the communication links may not be
reliable and can even change, the problem boils down to
dealing with delayed information (as in [9]). Note, however,
that each node vj needs to keep track of its own current
state, the total mass transmitted to each neighboring node
vl ∈ N+

j (the total mass can be different for each node
vl due to, for example, newly established communication
links), and the total mass received from each neighboring
node vi ∈ N−j that transmits information to node vj . Since
different information might be needed at each node vl at
each time instant k, node vj is required to broadcast a table
of values with entries for each receiving node.

Example 1: We illustrate how the algorithm operates via
a small network of six nodes. Each node vj chooses its self-
weight and the weight of its outgoing links at each time
instant k to be (1 + D+

j [k])−1 (such that the sum of all
weights plj [k], vl ∈ N+

j [k] ∪ {vj}, assigned by each node
vj to links to its out-neighbors and itself at time step k is
equal to 1). First, suppose the nodes experience only changes
in interconnection topology but no delays. When each node
updates its information state xj [k] using equation (4), the
information state for the whole network is given by x[k +
1] = P [k]x[k], where P [k] depends on the links present at
time instant k. For example, at time instants k = k1 and
k = k2, the interconnection topologies are captured by the
graphs in Figures 2(a) and 2(b).
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(a) Connections and weights at in-
stant k1.
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(b) Connections and weights at in-
stant k2.

Fig. 2. A network of six nodes, where each node vj chooses its self-weight
and the weight of the links to its out-neighbors to be (1 +D+

j [k])−1.

We use twice the update formula (4) with initial conditions
y[0] = (−1 1 2 3 4 3)T and z[0] = 1T respectively.
At each iteration, we generate a new random graph with
six nodes that includes a directed link (vj , vi) from node
vi to node vj (vi, vj ∈ V , vi 6= vj) with some probability
p independently between different links. Note that once the
graph is chosen at iteration k, the update matrix P [k] will be
column stochastic. A realization of the ratios at each node
is shown in Figure 3; in this case, the average is 2. When
delays are present with maximum delay τ̄ = 5 we use the
update formula (5) with the same initial conditions and we
observe that the system again converges to the exact average.
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Fig. 3. We use twice the update formula (4) with initial conditions y[0] =
(−1 1 2 3 4 3)T and z[0] = 1T respectively, and plot the ratio
yj [k]/zj [k] for each node vj under changing interconnection topology but
no delays (left). When delays are present (maximum delay τ̄ = 5) we use
the update formula (5) with the same initial conditions and observe that the
ratios again converge to the average, but with a slower convergence (right).

IV. CONCLUSIONS
In this paper, we studied distributed strategies for a

discrete-time networked system to reach asymptotic average
consensus in the presence of dynamically changing topolo-
gies on top of time-delays. By assuming that nodes in the
multi-agent system have knowledge of their out-degree, we
have shown that our proposed discrete-time strategy reaches
asymptotic average consensus in a distributed fashion, in the
presence of dynamically changing interconnection topology
for whatever the realization of delays, as long as they are
bounded and the union graph of the graph topologies over
consecutive time intervals forms a strongly connected graph
infinitely often. The results are illustrated via examples.
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